1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-12 10:39:00 +00:00
trezor-firmware/legacy/firmware/signing.c

1890 lines
62 KiB
C

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "signing.h"
#include "crypto.h"
#include "ecdsa.h"
#include "fsm.h"
#include "gettext.h"
#include "layout2.h"
#include "memzero.h"
#include "messages.h"
#include "messages.pb.h"
#include "protect.h"
#include "secp256k1.h"
#include "transaction.h"
static uint32_t inputs_count;
static uint32_t outputs_count;
static uint32_t change_count;
static const CoinInfo *coin;
static CONFIDENTIAL HDNode root;
static CONFIDENTIAL HDNode node;
static bool signing = false;
enum {
STAGE_REQUEST_1_INPUT,
STAGE_REQUEST_2_OUTPUT,
STAGE_REQUEST_3_INPUT,
STAGE_REQUEST_3_PREV_META,
STAGE_REQUEST_3_PREV_INPUT,
STAGE_REQUEST_3_PREV_OUTPUT,
#if !BITCOIN_ONLY
STAGE_REQUEST_3_PREV_EXTRADATA,
#endif
STAGE_REQUEST_4_INPUT,
STAGE_REQUEST_4_OUTPUT,
STAGE_REQUEST_SEGWIT_INPUT,
STAGE_REQUEST_5_OUTPUT,
STAGE_REQUEST_SEGWIT_WITNESS,
#if !BITCOIN_ONLY
STAGE_REQUEST_DECRED_WITNESS,
#endif
} signing_stage;
static uint32_t idx1, idx2;
static uint32_t signatures;
static TxRequest resp;
static TxInputType input;
static TxOutputBinType bin_output;
static TxStruct to, tp, ti;
static Hasher hasher_prevouts, hasher_sequence, hasher_outputs, hasher_check;
static uint8_t CONFIDENTIAL privkey[32];
static uint8_t pubkey[33], sig[64];
static uint8_t hash_prevouts[32], hash_sequence[32], hash_outputs[32];
#if !BITCOIN_ONLY
static uint8_t decred_hash_prefix[32];
#endif
static uint8_t hash_inputs_check[32];
static uint64_t to_spend, spending, change_spend;
static uint32_t version = 1;
static uint32_t lock_time = 0;
static uint32_t expiry = 0;
static uint32_t version_group_id = 0;
static uint32_t timestamp = 0;
static uint32_t min_sequence = 0;
#if !BITCOIN_ONLY
static uint32_t branch_id = 0;
#endif
static uint32_t next_nonsegwit_input;
static uint32_t progress, progress_step, progress_meta_step;
static bool multisig_fp_set, multisig_fp_mismatch;
static uint8_t multisig_fp[32];
static uint32_t in_address_n[8];
static size_t in_address_n_count;
static uint32_t tx_weight;
/* A marker for in_address_n_count to indicate a mismatch in bip32 paths in
input */
#define BIP32_NOCHANGEALLOWED 1
/* The number of bip32 levels used in a wallet (chain and address) */
#define BIP32_WALLET_DEPTH 2
/* The chain id used for change */
#define BIP32_CHANGE_CHAIN 1
/* The maximum allowed change address. This should be large enough for normal
use and still allow to quickly brute-force the correct bip32 path. */
#define BIP32_MAX_LAST_ELEMENT 1000000
/* transaction header size: 4 byte version */
#define TXSIZE_HEADER 4
/* transaction footer size: 4 byte lock time */
#define TXSIZE_FOOTER 4
/* transaction segwit overhead 2 marker */
#define TXSIZE_SEGWIT_OVERHEAD 2
/* The maximum number of change-outputs allowed without user confirmation. */
#define MAX_SILENT_CHANGE_COUNT 2
/* Setting nSequence to this value for every input in a transaction disables
nLockTime. */
#define SEQUENCE_FINAL 0xffffffff
enum {
SIGHASH_ALL = 1,
SIGHASH_FORKID = 0x40,
};
enum {
DECRED_SERIALIZE_FULL = 0,
DECRED_SERIALIZE_NO_WITNESS = 1,
DECRED_SERIALIZE_WITNESS_SIGNING = 3,
};
/* progress_step/meta_step are fixed point numbers, giving the
* progress per input in permille with these many additional bits.
*/
#define PROGRESS_PRECISION 16
/*
clang-format off
Workflow of streamed signing
The STAGE_ constants describe the signing_stage when request is sent.
I - input
O - output
Phase1 - process inputs
- confirm outputs
- check fee and confirm totals
- check previous transactions
=========================================================
foreach I (idx1):
Request I STAGE_REQUEST_1_INPUT
Add I to segwit hash_prevouts, hash_sequence
Add I to Decred decred_hash_prefix
Add I to TransactionChecksum (prevout and type)
if (Decred)
Return I
foreach O (idx1):
Request O STAGE_REQUEST_2_OUTPUT
Add O to Decred decred_hash_prefix
Add O to TransactionChecksum
if (Decred)
Return O
Display output
Ask for confirmation
Check tx fee
Ask for confirmation
foreach I (idx1):
Request I STAGE_REQUEST_3_INPUT
Request prevhash I, META STAGE_REQUEST_3_PREV_META
foreach prevhash I (idx2):
Request prevhash I STAGE_REQUEST_3_PREV_INPUT
foreach prevhash O (idx2):
Request prevhash O STAGE_REQUEST_3_PREV_OUTPUT
Add amount of prevhash O (which is amount of I)
Request prevhash extra data (if applicable) STAGE_REQUEST_3_PREV_EXTRADATA
Calculate hash of streamed tx, compare to prevhash I
Phase2: sign inputs, check that nothing changed
===============================================
if (Decred)
Skip to STAGE_REQUEST_DECRED_WITNESS
foreach I (idx1): // input to sign
if (idx1 is segwit)
Request I STAGE_REQUEST_SEGWIT_INPUT
Return serialized input chunk
else
foreach I (idx2):
Request I STAGE_REQUEST_4_INPUT
If idx1 == idx2
Fill scriptsig
Remember key for signing
Add I to StreamTransactionSign
Add I to TransactionChecksum
foreach O (idx2):
Request O STAGE_REQUEST_4_OUTPUT
Add O to StreamTransactionSign
Add O to TransactionChecksum
Compare TransactionChecksum with checksum computed in Phase 1
If different:
Failure
Sign StreamTransactionSign
Return signed chunk
foreach O (idx1):
Request O STAGE_REQUEST_5_OUTPUT
Rewrite change address
Return O
Phase3: sign segwit inputs, check that nothing changed
===============================================
foreach I (idx1): // input to sign
Request I STAGE_REQUEST_SEGWIT_WITNESS
Check amount
Sign segwit prevhash, sequence, amount, outputs
Return witness
Phase3: sign Decred inputs
==========================
foreach I (idx1): // input to sign STAGE_REQUEST_DECRED_WITNESS
Request I
Fill scriptSig
Compute hash_witness
Sign (hash_type || decred_hash_prefix || hash_witness)
Return witness
clang-format on
*/
void send_req_1_input(void) {
signing_stage = STAGE_REQUEST_1_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_2_output(void) {
signing_stage = STAGE_REQUEST_2_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_3_input(void) {
signing_stage = STAGE_REQUEST_3_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_3_prev_meta(void) {
signing_stage = STAGE_REQUEST_3_PREV_META;
resp.has_request_type = true;
resp.request_type = RequestType_TXMETA;
resp.has_details = true;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes,
input.prev_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_3_prev_input(void) {
signing_stage = STAGE_REQUEST_3_PREV_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes,
resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_3_prev_output(void) {
signing_stage = STAGE_REQUEST_3_PREV_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes,
resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
#if !BITCOIN_ONLY
void send_req_3_prev_extradata(uint32_t chunk_offset, uint32_t chunk_len) {
signing_stage = STAGE_REQUEST_3_PREV_EXTRADATA;
resp.has_request_type = true;
resp.request_type = RequestType_TXEXTRADATA;
resp.has_details = true;
resp.details.has_extra_data_offset = true;
resp.details.extra_data_offset = chunk_offset;
resp.details.has_extra_data_len = true;
resp.details.extra_data_len = chunk_len;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes,
resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
#endif
void send_req_4_input(void) {
signing_stage = STAGE_REQUEST_4_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_4_output(void) {
signing_stage = STAGE_REQUEST_4_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_segwit_input(void) {
signing_stage = STAGE_REQUEST_SEGWIT_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_segwit_witness(void) {
signing_stage = STAGE_REQUEST_SEGWIT_WITNESS;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
#if !BITCOIN_ONLY
void send_req_decred_witness(void) {
signing_stage = STAGE_REQUEST_DECRED_WITNESS;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
#endif
void send_req_5_output(void) {
signing_stage = STAGE_REQUEST_5_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_finished(void) {
resp.has_request_type = true;
resp.request_type = RequestType_TXFINISHED;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void phase1_request_next_input(void) {
if (idx1 < inputs_count - 1) {
idx1++;
send_req_1_input();
} else {
// compute segwit hashPrevouts & hashSequence
hasher_Final(&hasher_prevouts, hash_prevouts);
hasher_Final(&hasher_sequence, hash_sequence);
hasher_Final(&hasher_check, hash_inputs_check);
// init hashOutputs
hasher_Reset(&hasher_outputs);
idx1 = 0;
send_req_2_output();
}
}
void phase2_request_next_input(void) {
if (idx1 == next_nonsegwit_input) {
idx2 = 0;
send_req_4_input();
} else {
send_req_segwit_input();
}
}
void extract_input_bip32_path(const TxInputType *tinput) {
if (in_address_n_count == BIP32_NOCHANGEALLOWED) {
return;
}
size_t count = tinput->address_n_count;
if (count < BIP32_WALLET_DEPTH) {
// no change address allowed
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
if (in_address_n_count == 0) {
// initialize in_address_n on first input seen
in_address_n_count = count;
// store the bip32 path up to the account
memcpy(in_address_n, tinput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t));
return;
}
// check that all addresses use a path of same length
if (in_address_n_count != count) {
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
// check that the bip32 path up to the account matches
if (memcmp(in_address_n, tinput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t)) != 0) {
// mismatch -> no change address allowed
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
}
bool check_change_bip32_path(const TxOutputType *toutput) {
size_t count = toutput->address_n_count;
// Check that the change path has the same bip32 path length,
// the same path up to the account, and that the wallet components
// (chain id and address) are as expected.
// Note: count >= BIP32_WALLET_DEPTH and count == in_address_n_count
// imply that in_address_n_count != BIP32_NOCHANGEALLOWED
return (count >= BIP32_WALLET_DEPTH && count == in_address_n_count &&
0 == memcmp(in_address_n, toutput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t)) &&
toutput->address_n[count - 2] <= BIP32_CHANGE_CHAIN &&
toutput->address_n[count - 1] <= BIP32_MAX_LAST_ELEMENT);
}
bool compile_input_script_sig(TxInputType *tinput) {
if (!multisig_fp_mismatch) {
// check that this is still multisig
uint8_t h[32] = {0};
if (!tinput->has_multisig ||
cryptoMultisigFingerprint(&(tinput->multisig), h) == 0 ||
memcmp(multisig_fp, h, 32) != 0) {
// Transaction has changed during signing
return false;
}
}
if (in_address_n_count != BIP32_NOCHANGEALLOWED) {
// check that input address didn't change
size_t count = tinput->address_n_count;
if (count < 2 || count != in_address_n_count ||
0 != memcmp(in_address_n, tinput->address_n,
(count - 2) * sizeof(uint32_t))) {
return false;
}
}
if (!coin_known_path_check(coin, tinput->script_type, tinput->address_n_count,
tinput->address_n, false)) {
return false;
}
memcpy(&node, &root, sizeof(HDNode));
if (hdnode_private_ckd_cached(&node, tinput->address_n,
tinput->address_n_count, NULL) == 0) {
// Failed to derive private key
return false;
}
hdnode_fill_public_key(&node);
if (tinput->has_multisig) {
tinput->script_sig.size = compile_script_multisig(coin, &(tinput->multisig),
tinput->script_sig.bytes);
} else { // SPENDADDRESS
uint8_t hash[20] = {0};
ecdsa_get_pubkeyhash(node.public_key, coin->curve->hasher_pubkey, hash);
tinput->script_sig.size =
compile_script_sig(coin->address_type, hash, tinput->script_sig.bytes);
}
return tinput->script_sig.size > 0;
}
void signing_init(const SignTx *msg, const CoinInfo *_coin,
const HDNode *_root) {
inputs_count = msg->inputs_count;
outputs_count = msg->outputs_count;
coin = _coin;
memcpy(&root, _root, sizeof(HDNode));
version = msg->version;
lock_time = msg->lock_time;
min_sequence = SEQUENCE_FINAL;
if (!coin->overwintered) {
if (msg->has_version_group_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Version group ID not enabled on this coin."));
signing_abort();
return;
}
if (msg->has_branch_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Branch ID not enabled on this coin."));
signing_abort();
return;
}
}
#if !BITCOIN_ONLY
expiry = (coin->decred || coin->overwintered) ? msg->expiry : 0;
timestamp = coin->timestamp ? msg->timestamp : 0;
if (coin->overwintered) {
if (!msg->has_version_group_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Version group ID must be set."));
signing_abort();
return;
}
if (!msg->has_branch_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Branch ID must be set."));
signing_abort();
return;
}
if (version != 4) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Unsupported transaction version."));
signing_abort();
return;
}
version_group_id = msg->version_group_id;
branch_id = msg->branch_id;
} else {
version_group_id = 0;
branch_id = 0;
}
#endif
uint32_t size = TXSIZE_HEADER + TXSIZE_FOOTER +
ser_length_size(inputs_count) +
ser_length_size(outputs_count);
#if !BITCOIN_ONLY
if (coin->decred) {
size += 4; // Decred expiry
size += ser_length_size(inputs_count); // Witness inputs count
}
#endif
tx_weight = 4 * size;
signatures = 0;
idx1 = 0;
to_spend = 0;
spending = 0;
change_spend = 0;
change_count = 0;
memzero(&input, sizeof(TxInputType));
memzero(&resp, sizeof(TxRequest));
signing = true;
progress = 0;
// we step by 500/inputs_count per input in phase1 and phase2
// this means 50 % per phase.
progress_step = (500 << PROGRESS_PRECISION) / inputs_count;
in_address_n_count = 0;
multisig_fp_set = false;
multisig_fp_mismatch = false;
next_nonsegwit_input = 0xffffffff;
tx_init(&to, inputs_count, outputs_count, version, lock_time, expiry, 0,
coin->curve->hasher_sign, coin->overwintered, version_group_id,
timestamp);
#if !BITCOIN_ONLY
if (coin->decred) {
to.version |= (DECRED_SERIALIZE_FULL << 16);
to.is_decred = true;
tx_init(&ti, inputs_count, outputs_count, version, lock_time, expiry, 0,
coin->curve->hasher_sign, coin->overwintered, version_group_id,
timestamp);
ti.version |= (DECRED_SERIALIZE_NO_WITNESS << 16);
ti.is_decred = true;
}
#endif
// segwit hashes for hashPrevouts and hashSequence
#if !BITCOIN_ONLY
if (coin->overwintered) {
hasher_InitParam(&hasher_prevouts, HASHER_BLAKE2B_PERSONAL,
"ZcashPrevoutHash", 16);
hasher_InitParam(&hasher_sequence, HASHER_BLAKE2B_PERSONAL,
"ZcashSequencHash", 16);
hasher_InitParam(&hasher_outputs, HASHER_BLAKE2B_PERSONAL,
"ZcashOutputsHash", 16);
hasher_Init(&hasher_check, coin->curve->hasher_sign);
} else
#endif
{
hasher_Init(&hasher_prevouts, coin->curve->hasher_sign);
hasher_Init(&hasher_sequence, coin->curve->hasher_sign);
hasher_Init(&hasher_outputs, coin->curve->hasher_sign);
hasher_Init(&hasher_check, coin->curve->hasher_sign);
}
layoutProgressSwipe(_("Signing transaction"), 0);
send_req_1_input();
}
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
static bool is_multisig_input_script_type(const TxInputType *txinput) {
if (txinput->script_type == InputScriptType_SPENDMULTISIG ||
txinput->script_type == InputScriptType_SPENDP2SHWITNESS ||
txinput->script_type == InputScriptType_SPENDWITNESS) {
return true;
}
return false;
}
static bool is_multisig_output_script_type(const TxOutputType *txoutput) {
if (txoutput->script_type == OutputScriptType_PAYTOMULTISIG ||
txoutput->script_type == OutputScriptType_PAYTOP2SHWITNESS ||
txoutput->script_type == OutputScriptType_PAYTOWITNESS) {
return true;
}
return false;
}
static bool is_internal_input_script_type(const TxInputType *txinput) {
if (txinput->script_type == InputScriptType_SPENDADDRESS ||
txinput->script_type == InputScriptType_SPENDMULTISIG ||
txinput->script_type == InputScriptType_SPENDP2SHWITNESS ||
txinput->script_type == InputScriptType_SPENDWITNESS) {
return true;
}
return false;
}
static bool is_change_output_script_type(const TxOutputType *txoutput) {
if (txoutput->script_type == OutputScriptType_PAYTOADDRESS ||
txoutput->script_type == OutputScriptType_PAYTOMULTISIG ||
txoutput->script_type == OutputScriptType_PAYTOP2SHWITNESS ||
txoutput->script_type == OutputScriptType_PAYTOWITNESS) {
return true;
}
return false;
}
static bool is_segwit_input_script_type(const TxInputType *txinput) {
if (txinput->script_type == InputScriptType_SPENDP2SHWITNESS ||
txinput->script_type == InputScriptType_SPENDWITNESS) {
return true;
}
return false;
}
static bool signing_validate_input(const TxInputType *txinput) {
if (txinput->prev_hash.size != 32) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Encountered invalid prevhash"));
signing_abort();
return false;
}
if (txinput->has_multisig && !is_multisig_input_script_type(txinput)) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Multisig field provided but not expected."));
signing_abort();
return false;
}
if (txinput->address_n_count > 0 && !is_internal_input_script_type(txinput)) {
fsm_sendFailure(FailureType_Failure_DataError,
"Input's address_n provided but not expected.");
signing_abort();
return false;
}
if (is_segwit_input_script_type(txinput)) {
if (!coin->has_segwit) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Segwit not enabled on this coin"));
signing_abort();
return false;
}
}
return true;
}
static bool signing_validate_output(TxOutputType *txoutput) {
if (txoutput->has_multisig && !is_multisig_output_script_type(txoutput)) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Multisig field provided but not expected."));
signing_abort();
return false;
}
if (txoutput->address_n_count > 0 &&
!is_change_output_script_type(txoutput)) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Output's address_n provided but not expected."));
signing_abort();
return false;
}
if (txoutput->script_type == OutputScriptType_PAYTOOPRETURN) {
if (txoutput->has_address || (txoutput->address_n_count > 0) ||
txoutput->has_multisig) {
fsm_sendFailure(FailureType_Failure_DataError,
_("OP_RETURN output with address or multisig"));
signing_abort();
return false;
}
if (txoutput->amount != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("OP_RETURN output with non-zero amount"));
signing_abort();
return false;
}
} else {
if (txoutput->has_op_return_data) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("OP RETURN data provided but not OP RETURN script type."));
signing_abort();
return false;
}
if (txoutput->has_address && txoutput->address_n_count > 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Both address and address_n provided."));
signing_abort();
return false;
} else if (!txoutput->has_address && txoutput->address_n_count == 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Missing address"));
signing_abort();
return false;
}
}
return true;
}
static bool signing_validate_bin_output(TxOutputBinType *tx_bin_output) {
if (!coin->decred && tx_bin_output->has_decred_script_version) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("Decred details provided but Decred coin not specified."));
signing_abort();
return false;
}
return true;
}
static bool signing_check_input(const TxInputType *txinput) {
/* compute multisig fingerprint */
/* (if all input share the same fingerprint, outputs having the same
* fingerprint will be considered as change outputs) */
if (txinput->has_multisig && !multisig_fp_mismatch) {
uint8_t h[32] = {0};
if (cryptoMultisigFingerprint(&txinput->multisig, h) == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Error computing multisig fingerprint"));
signing_abort();
return false;
}
if (multisig_fp_set) {
if (memcmp(multisig_fp, h, 32) != 0) {
multisig_fp_mismatch = true;
}
} else {
memcpy(multisig_fp, h, 32);
multisig_fp_set = true;
}
} else { // single signature
multisig_fp_mismatch = true;
}
// remember the input bip32 path
// change addresses must use the same bip32 path as all inputs
extract_input_bip32_path(txinput);
// remember the minimum nSequence value
if (txinput->sequence < min_sequence) min_sequence = txinput->sequence;
// compute segwit hashPrevouts & hashSequence
tx_prevout_hash(&hasher_prevouts, txinput);
tx_sequence_hash(&hasher_sequence, txinput);
#if !BITCOIN_ONLY
if (coin->decred) {
// serialize Decred prefix in Phase 1
resp.has_serialized = true;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.size =
tx_serialize_input(&to, txinput, resp.serialized.serialized_tx.bytes);
// compute Decred hashPrefix
tx_serialize_input_hash(&ti, txinput);
}
#endif
// hash all input data to check it later (relevant for fee computation)
tx_input_check_hash(&hasher_check, txinput);
return true;
}
// check if the hash of the prevtx matches
static bool signing_check_prevtx_hash(void) {
uint8_t hash[32] = {0};
tx_hash_final(&tp, hash, true);
if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Encountered invalid prevhash"));
signing_abort();
return false;
}
if (idx1 < inputs_count - 1) {
idx1++;
send_req_3_input();
} else {
hasher_Final(&hasher_check, hash);
if (memcmp(hash, hash_inputs_check, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Transaction has changed during signing"));
signing_abort();
return false;
}
// Everything was checked, now phase 2 begins and the transaction is signed.
progress_meta_step = progress_step / (inputs_count + outputs_count);
layoutProgress(_("Signing transaction"), progress);
idx1 = 0;
#if !BITCOIN_ONLY
if (coin->decred) {
// Decred prefix serialized in Phase 1, skip Phase 2
send_req_decred_witness();
} else
#endif
{
phase2_request_next_input();
}
}
return true;
}
static bool signing_check_output(TxOutputType *txoutput) {
// Phase1: Check outputs
// add it to hash_outputs
// ask user for permission
// check for change address
bool is_change = false;
if (txoutput->address_n_count > 0) {
/*
* For multisig check that all inputs are multisig
*/
if (txoutput->has_multisig) {
uint8_t h[32] = {0};
if (multisig_fp_set && !multisig_fp_mismatch &&
cryptoMultisigFingerprint(&(txoutput->multisig), h) &&
memcmp(multisig_fp, h, 32) == 0) {
is_change = check_change_bip32_path(txoutput);
}
} else {
is_change = check_change_bip32_path(txoutput);
}
}
if (!is_change_output_script_type(txoutput)) {
is_change = false;
}
if (is_change) {
if (change_spend + txoutput->amount < change_spend) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return false;
}
change_spend += txoutput->amount;
change_count++;
if (change_count <= 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return false;
}
}
if (spending + txoutput->amount < spending) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return false;
}
spending += txoutput->amount;
int co = compile_output(coin, &root, txoutput, &bin_output, !is_change);
if (!is_change) {
layoutProgress(_("Signing transaction"), progress);
}
if (co < 0) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
} else if (co == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile output"));
signing_abort();
return false;
}
#if !BITCOIN_ONLY
if (coin->decred) {
// serialize Decred prefix in Phase 1
resp.has_serialized = true;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.size = tx_serialize_output(
&to, &bin_output, resp.serialized.serialized_tx.bytes);
// compute Decred hashPrefix
tx_serialize_output_hash(&ti, &bin_output);
}
#endif
// compute segwit hashOuts
tx_output_hash(&hasher_outputs, &bin_output, coin->decred);
return true;
}
static bool signing_confirm_tx(void) {
if (coin->negative_fee) {
// bypass check for negative fee coins, required for reward TX
} else {
// check fees
if (spending > to_spend) {
fsm_sendFailure(FailureType_Failure_NotEnoughFunds,
_("Not enough funds"));
signing_abort();
return false;
}
}
uint64_t fee = 0;
if (spending <= to_spend) {
fee = to_spend - spending;
if (fee > ((uint64_t)tx_weight * coin->maxfee_kb) / 4000) {
layoutFeeOverThreshold(coin, fee);
if (!protectButton(ButtonRequestType_ButtonRequest_FeeOverThreshold,
false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
}
} else {
fee = 0;
}
if (change_count > MAX_SILENT_CHANGE_COUNT) {
layoutChangeCountOverThreshold(change_count);
if (!protectButton(ButtonRequestType_ButtonRequest_SignTx, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
}
if (lock_time != 0) {
bool lock_time_disabled = (min_sequence == SEQUENCE_FINAL);
layoutConfirmNondefaultLockTime(lock_time, lock_time_disabled);
if (!protectButton(ButtonRequestType_ButtonRequest_SignTx, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
}
// last confirmation
layoutConfirmTx(coin, to_spend - change_spend, fee);
if (!protectButton(ButtonRequestType_ButtonRequest_SignTx, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
return true;
}
static uint32_t signing_hash_type(void) {
uint32_t hash_type = SIGHASH_ALL;
if (coin->has_fork_id) {
hash_type |= (coin->fork_id << 8) | SIGHASH_FORKID;
}
return hash_type;
}
static void phase1_request_next_output(void) {
if (idx1 < outputs_count - 1) {
idx1++;
send_req_2_output();
} else {
#if !BITCOIN_ONLY
if (coin->decred) {
// compute Decred hashPrefix
tx_hash_final(&ti, decred_hash_prefix, false);
}
#endif
hasher_Final(&hasher_outputs, hash_outputs);
if (!signing_confirm_tx()) {
return;
}
idx1 = 0;
send_req_3_input();
}
}
static void signing_hash_bip143(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
Hasher hasher_preimage = {0};
hasher_Init(&hasher_preimage, coin->curve->hasher_sign);
hasher_Update(&hasher_preimage, (const uint8_t *)&version, 4); // nVersion
hasher_Update(&hasher_preimage, hash_prevouts, 32); // hashPrevouts
hasher_Update(&hasher_preimage, hash_sequence, 32); // hashSequence
tx_prevout_hash(&hasher_preimage, txinput); // outpoint
tx_script_hash(&hasher_preimage, txinput->script_sig.size,
txinput->script_sig.bytes); // scriptCode
hasher_Update(&hasher_preimage, (const uint8_t *)&txinput->amount,
8); // amount
tx_sequence_hash(&hasher_preimage, txinput); // nSequence
hasher_Update(&hasher_preimage, hash_outputs, 32); // hashOutputs
hasher_Update(&hasher_preimage, (const uint8_t *)&lock_time, 4); // nLockTime
hasher_Update(&hasher_preimage, (const uint8_t *)&hash_type, 4); // nHashType
hasher_Final(&hasher_preimage, hash);
}
#if !BITCOIN_ONLY
static void signing_hash_zip243(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
uint8_t personal[16] = {0};
memcpy(personal, "ZcashSigHash", 12);
memcpy(personal + 12, &branch_id, 4);
Hasher hasher_preimage = {0};
hasher_InitParam(&hasher_preimage, HASHER_BLAKE2B_PERSONAL, personal,
sizeof(personal));
uint32_t ver = version | TX_OVERWINTERED; // 1. nVersion | fOverwintered
hasher_Update(&hasher_preimage, (const uint8_t *)&ver, 4);
hasher_Update(&hasher_preimage, (const uint8_t *)&version_group_id,
4); // 2. nVersionGroupId
hasher_Update(&hasher_preimage, hash_prevouts, 32); // 3. hashPrevouts
hasher_Update(&hasher_preimage, hash_sequence, 32); // 4. hashSequence
hasher_Update(&hasher_preimage, hash_outputs, 32); // 5. hashOutputs
// 6. hashJoinSplits
hasher_Update(&hasher_preimage, (const uint8_t *)"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 32);
// 7. hashShieldedSpends
hasher_Update(&hasher_preimage, (const uint8_t *)"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 32);
// 8. hashShieldedOutputs
hasher_Update(&hasher_preimage, (const uint8_t *)"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 32);
hasher_Update(&hasher_preimage, (const uint8_t *)&lock_time,
4); // 9. nLockTime
hasher_Update(&hasher_preimage, (const uint8_t *)&expiry,
4); // 10. expiryHeight
hasher_Update(&hasher_preimage,
(const uint8_t *)"\x00\x00\x00\x00\x00\x00\x00\x00",
8); // 11. valueBalance
hasher_Update(&hasher_preimage, (const uint8_t *)&hash_type,
4); // 12. nHashType
tx_prevout_hash(&hasher_preimage, txinput); // 13a. outpoint
tx_script_hash(&hasher_preimage, txinput->script_sig.size,
txinput->script_sig.bytes); // 13b. scriptCode
hasher_Update(&hasher_preimage, (const uint8_t *)&txinput->amount,
8); // 13c. value
tx_sequence_hash(&hasher_preimage, txinput); // 13d. nSequence
hasher_Final(&hasher_preimage, hash);
}
static void signing_hash_decred(const uint8_t *hash_witness, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
Hasher hasher_preimage = {0};
hasher_Init(&hasher_preimage, coin->curve->hasher_sign);
hasher_Update(&hasher_preimage, (const uint8_t *)&hash_type, 4);
hasher_Update(&hasher_preimage, decred_hash_prefix, 32);
hasher_Update(&hasher_preimage, hash_witness, 32);
hasher_Final(&hasher_preimage, hash);
}
#endif
static bool signing_sign_hash(TxInputType *txinput, const uint8_t *private_key,
const uint8_t *public_key, const uint8_t *hash) {
resp.serialized.has_signature_index = true;
resp.serialized.signature_index = idx1;
resp.serialized.has_signature = true;
resp.serialized.has_serialized_tx = true;
if (ecdsa_sign_digest(coin->curve->params, private_key, hash, sig, NULL,
NULL) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Signing failed"));
signing_abort();
return false;
}
resp.serialized.signature.size =
ecdsa_sig_to_der(sig, resp.serialized.signature.bytes);
uint8_t sighash = signing_hash_type() & 0xff;
if (txinput->has_multisig) {
// fill in the signature
int pubkey_idx =
cryptoMultisigPubkeyIndex(coin, &(txinput->multisig), public_key);
if (pubkey_idx < 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Pubkey not found in multisig script"));
signing_abort();
return false;
}
memcpy(txinput->multisig.signatures[pubkey_idx].bytes,
resp.serialized.signature.bytes, resp.serialized.signature.size);
txinput->multisig.signatures[pubkey_idx].size =
resp.serialized.signature.size;
txinput->script_sig.size = serialize_script_multisig(
coin, &(txinput->multisig), sighash, txinput->script_sig.bytes);
if (txinput->script_sig.size == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize multisig script"));
signing_abort();
return false;
}
} else { // SPENDADDRESS
txinput->script_sig.size = serialize_script_sig(
resp.serialized.signature.bytes, resp.serialized.signature.size,
public_key, 33, sighash, txinput->script_sig.bytes);
}
return true;
}
static bool signing_sign_input(void) {
uint8_t hash[32] = {0};
hasher_Final(&hasher_check, hash);
if (memcmp(hash, hash_outputs, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Transaction has changed during signing"));
signing_abort();
return false;
}
uint32_t hash_type = signing_hash_type();
hasher_Update(&ti.hasher, (const uint8_t *)&hash_type, 4);
tx_hash_final(&ti, hash, false);
resp.has_serialized = true;
if (!signing_sign_hash(&input, privkey, pubkey, hash)) return false;
resp.serialized.serialized_tx.size =
tx_serialize_input(&to, &input, resp.serialized.serialized_tx.bytes);
return true;
}
static bool signing_sign_segwit_input(TxInputType *txinput) {
// idx1: index to sign
uint8_t hash[32] = {0};
if (is_segwit_input_script_type(txinput)) {
if (!txinput->has_amount) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Segwit input without amount"));
signing_abort();
return false;
}
if (!compile_input_script_sig(txinput)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return false;
}
signing_hash_bip143(txinput, hash);
resp.has_serialized = true;
if (!signing_sign_hash(txinput, node.private_key, node.public_key, hash))
return false;
uint8_t sighash = signing_hash_type() & 0xff;
if (txinput->has_multisig) {
uint32_t r = 1; // skip number of items (filled in later)
resp.serialized.serialized_tx.bytes[r] = 0;
r++;
int nwitnesses = 2;
for (uint32_t i = 0; i < txinput->multisig.signatures_count; i++) {
if (txinput->multisig.signatures[i].size == 0) {
continue;
}
nwitnesses++;
txinput->multisig.signatures[i]
.bytes[txinput->multisig.signatures[i].size] = sighash;
r += tx_serialize_script(txinput->multisig.signatures[i].size + 1,
txinput->multisig.signatures[i].bytes,
resp.serialized.serialized_tx.bytes + r);
}
uint32_t script_len =
compile_script_multisig(coin, &txinput->multisig, 0);
r += ser_length(script_len, resp.serialized.serialized_tx.bytes + r);
r += compile_script_multisig(coin, &txinput->multisig,
resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.bytes[0] = nwitnesses;
resp.serialized.serialized_tx.size = r;
} else { // single signature
uint32_t r = 0;
r += ser_length(2, resp.serialized.serialized_tx.bytes + r);
resp.serialized.signature.bytes[resp.serialized.signature.size] = sighash;
r += tx_serialize_script(resp.serialized.signature.size + 1,
resp.serialized.signature.bytes,
resp.serialized.serialized_tx.bytes + r);
r += tx_serialize_script(33, node.public_key,
resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.size = r;
}
} else {
// empty witness
resp.has_serialized = true;
resp.serialized.has_signature_index = false;
resp.serialized.has_signature = false;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.bytes[0] = 0;
resp.serialized.serialized_tx.size = 1;
}
// if last witness add tx footer
if (idx1 == inputs_count - 1) {
uint32_t r = resp.serialized.serialized_tx.size;
r += tx_serialize_footer(&to, resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.size = r;
}
return true;
}
#if !BITCOIN_ONLY
static bool signing_sign_decred_input(TxInputType *txinput) {
uint8_t hash[32] = {}, hash_witness[32] = {};
tx_hash_final(&ti, hash_witness, false);
signing_hash_decred(hash_witness, hash);
resp.has_serialized = true;
if (!signing_sign_hash(txinput, node.private_key, node.public_key, hash))
return false;
resp.serialized.serialized_tx.size = tx_serialize_decred_witness(
&to, txinput, resp.serialized.serialized_tx.bytes);
return true;
}
#endif
#define ENABLE_SEGWIT_NONSEGWIT_MIXING 1
void signing_txack(TransactionType *tx) {
if (!signing) {
fsm_sendFailure(FailureType_Failure_UnexpectedMessage,
_("Not in Signing mode"));
layoutHome();
return;
}
static int update_ctr = 0;
if (update_ctr++ == 20) {
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
}
memzero(&resp, sizeof(TxRequest));
switch (signing_stage) {
case STAGE_REQUEST_1_INPUT:
if (!signing_validate_input(&tx->inputs[0]) ||
!signing_check_input(&tx->inputs[0])) {
return;
}
if (!tx->inputs[0].has_amount) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Expected input with amount"));
signing_abort();
return;
}
if (to_spend + tx->inputs[0].amount < to_spend) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return;
}
to_spend += tx->inputs[0].amount;
tx_weight += tx_input_weight(coin, &tx->inputs[0]);
#if !BITCOIN_ONLY
if (coin->decred) {
tx_weight += tx_decred_witness_weight(&tx->inputs[0]);
}
#endif
if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG ||
tx->inputs[0].script_type == InputScriptType_SPENDADDRESS) {
#if !ENABLE_SEGWIT_NONSEGWIT_MIXING
// don't mix segwit and non-segwit inputs
if (idx1 > 0 && to.is_segwit == true) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("Mixing segwit and non-segwit inputs is not allowed"));
signing_abort();
return;
}
#endif
if (!coin->force_bip143 && !coin->overwintered) {
// remember the first non-segwit input -- this is the first input
// we need to sign during phase2
if (next_nonsegwit_input == 0xffffffff) next_nonsegwit_input = idx1;
}
} else if (is_segwit_input_script_type(&tx->inputs[0])) {
if (!to.is_segwit) {
tx_weight += TXSIZE_SEGWIT_OVERHEAD + to.inputs_len;
}
#if !ENABLE_SEGWIT_NONSEGWIT_MIXING
// don't mix segwit and non-segwit inputs
if (idx1 == 0) {
to.is_segwit = true;
} else if (to.is_segwit == false) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("Mixing segwit and non-segwit inputs is not allowed"));
signing_abort();
return;
}
#else
to.is_segwit = true;
#endif
} else {
fsm_sendFailure(FailureType_Failure_DataError,
_("Wrong input script type"));
signing_abort();
return;
}
phase1_request_next_input();
return;
case STAGE_REQUEST_2_OUTPUT:
if (!signing_validate_output(&tx->outputs[0]) ||
!signing_check_output(&tx->outputs[0])) {
return;
}
tx_weight += tx_output_weight(coin, &tx->outputs[0]);
phase1_request_next_output();
return;
case STAGE_REQUEST_3_INPUT:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
if (!tx->inputs[0].has_amount) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Expected input with amount"));
signing_abort();
return;
}
if (idx1 == 0) {
hasher_Reset(&hasher_check);
}
tx_input_check_hash(&hasher_check, tx->inputs);
memcpy(&input, tx->inputs, sizeof(TxInputType));
send_req_3_prev_meta();
return;
case STAGE_REQUEST_3_PREV_META:
if (tx->outputs_cnt <= input.prev_index) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Not enough outputs in previous transaction."));
signing_abort();
return;
}
if (!coin->extra_data && tx->extra_data_len > 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Extra data not enabled on this coin."));
signing_abort();
return;
}
if (!coin->decred && !coin->overwintered && tx->has_expiry) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Expiry not enabled on this coin."));
signing_abort();
return;
}
if (!coin->timestamp && tx->has_timestamp) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Timestamp not enabled on this coin."));
signing_abort();
return;
}
if (coin->timestamp && !tx->timestamp) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Timestamp must be set."));
signing_abort();
return;
}
if (coin->overwintered) {
if (tx->version >= 3 && !tx->has_version_group_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Version group ID must be set when version >= 3."));
signing_abort();
return;
}
if (tx->version < 3 && tx->has_version_group_id) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("Version group ID must be unset when version < 3."));
signing_abort();
return;
}
} else { // !coin->overwintered
if (tx->has_version_group_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Version group ID not enabled on this coin."));
signing_abort();
return;
}
if (tx->has_branch_id) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Branch ID not enabled on this coin."));
signing_abort();
return;
}
}
if (tx->inputs_cnt + tx->outputs_cnt < tx->inputs_cnt) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return;
}
tx_init(&tp, tx->inputs_cnt, tx->outputs_cnt, tx->version, tx->lock_time,
tx->expiry, tx->extra_data_len, coin->curve->hasher_sign,
coin->overwintered, tx->version_group_id, tx->timestamp);
#if !BITCOIN_ONLY
if (coin->decred) {
tp.version |= (DECRED_SERIALIZE_NO_WITNESS << 16);
tp.is_decred = true;
}
#endif
progress_meta_step = progress_step / (tp.inputs_len + tp.outputs_len);
idx2 = 0;
if (tp.inputs_len > 0) {
send_req_3_prev_input();
} else {
tx_serialize_header_hash(&tp);
send_req_3_prev_output();
}
return;
case STAGE_REQUEST_3_PREV_INPUT:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
progress = (idx1 * progress_step + idx2 * progress_meta_step) >>
PROGRESS_PRECISION;
if (!tx_serialize_input_hash(&tp, tx->inputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize input"));
signing_abort();
return;
}
if (idx2 < tp.inputs_len - 1) {
idx2++;
send_req_3_prev_input();
} else {
idx2 = 0;
send_req_3_prev_output();
}
return;
case STAGE_REQUEST_3_PREV_OUTPUT:
if (!signing_validate_bin_output(&tx->bin_outputs[0])) {
return;
}
progress = (idx1 * progress_step +
(tp.inputs_len + idx2) * progress_meta_step) >>
PROGRESS_PRECISION;
if (!tx_serialize_output_hash(&tp, tx->bin_outputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize output"));
signing_abort();
return;
}
if (idx2 == input.prev_index) {
if (input.amount != tx->bin_outputs[0].amount) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Invalid amount specified"));
signing_abort();
return;
}
#if !BITCOIN_ONLY
if (coin->decred && tx->bin_outputs[0].decred_script_version > 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Decred script version does "
"not match previous output"));
signing_abort();
return;
}
#endif
}
if (idx2 < tp.outputs_len - 1) {
/* Check prevtx of next input */
idx2++;
send_req_3_prev_output();
#if !BITCOIN_ONLY
} else if (coin->extra_data && tp.extra_data_len > 0) { // has extra data
send_req_3_prev_extradata(0, MIN(1024, tp.extra_data_len));
return;
#endif
} else {
/* prevtx is done */
if (!signing_check_prevtx_hash()) {
return;
}
}
return;
#if !BITCOIN_ONLY
case STAGE_REQUEST_3_PREV_EXTRADATA:
if (!tx_serialize_extra_data_hash(&tp, tx->extra_data.bytes,
tx->extra_data.size)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize extra data"));
signing_abort();
return;
}
if (tp.extra_data_received <
tp.extra_data_len) { // still some data remaining
send_req_3_prev_extradata(
tp.extra_data_received,
MIN(1024, tp.extra_data_len - tp.extra_data_received));
} else {
if (!signing_check_prevtx_hash()) {
return;
}
}
return;
#endif
case STAGE_REQUEST_4_INPUT:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
progress =
500 + ((signatures * progress_step + idx2 * progress_meta_step) >>
PROGRESS_PRECISION);
if (idx2 == 0) {
tx_init(&ti, inputs_count, outputs_count, version, lock_time, expiry, 0,
coin->curve->hasher_sign, coin->overwintered, version_group_id,
timestamp);
hasher_Reset(&hasher_check);
}
// check inputs are the same as those in phase 1
tx_input_check_hash(&hasher_check, tx->inputs);
if (idx2 == idx1) {
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return;
}
memcpy(&input, &tx->inputs[0], sizeof(input));
memcpy(privkey, node.private_key, 32);
memcpy(pubkey, node.public_key, 33);
} else {
if (next_nonsegwit_input == idx1 && idx2 > idx1 &&
(tx->inputs[0].script_type == InputScriptType_SPENDADDRESS ||
tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG)) {
next_nonsegwit_input = idx2;
}
tx->inputs[0].script_sig.size = 0;
}
if (!tx_serialize_input_hash(&ti, tx->inputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize input"));
signing_abort();
return;
}
if (idx2 < inputs_count - 1) {
idx2++;
send_req_4_input();
} else {
uint8_t hash[32] = {0};
hasher_Final(&hasher_check, hash);
if (memcmp(hash, hash_inputs_check, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Transaction has changed during signing"));
signing_abort();
return;
}
hasher_Reset(&hasher_check);
idx2 = 0;
send_req_4_output();
}
return;
case STAGE_REQUEST_4_OUTPUT:
if (!signing_validate_output(&tx->outputs[0])) {
return;
}
progress = 500 + ((signatures * progress_step +
(inputs_count + idx2) * progress_meta_step) >>
PROGRESS_PRECISION);
if (compile_output(coin, &root, tx->outputs, &bin_output, false) <= 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile output"));
signing_abort();
return;
}
// check hashOutputs
tx_output_hash(&hasher_check, &bin_output, coin->decred);
if (!tx_serialize_output_hash(&ti, &bin_output)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize output"));
signing_abort();
return;
}
if (idx2 < outputs_count - 1) {
idx2++;
send_req_4_output();
} else {
if (!signing_sign_input()) {
return;
}
// since this took a longer time, update progress
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
if (idx1 < inputs_count - 1) {
idx1++;
phase2_request_next_input();
} else {
idx1 = 0;
send_req_5_output();
}
}
return;
case STAGE_REQUEST_SEGWIT_INPUT:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
resp.has_serialized = true;
resp.serialized.has_signature_index = false;
resp.serialized.has_signature = false;
resp.serialized.has_serialized_tx = true;
if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG ||
tx->inputs[0].script_type == InputScriptType_SPENDADDRESS) {
if (!(coin->force_bip143 || coin->overwintered)) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Transaction has changed during signing"));
signing_abort();
return;
}
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return;
}
if (!tx->inputs[0].has_amount) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Expected input with amount"));
signing_abort();
return;
}
uint8_t hash[32] = {0};
#if !BITCOIN_ONLY
if (coin->overwintered) {
if (version != 4) {
fsm_sendFailure(
FailureType_Failure_DataError,
_("Unsupported version for overwintered transaction"));
signing_abort();
return;
}
signing_hash_zip243(&tx->inputs[0], hash);
} else
#endif
{
signing_hash_bip143(&tx->inputs[0], hash);
}
if (!signing_sign_hash(&tx->inputs[0], node.private_key,
node.public_key, hash))
return;
// since this took a longer time, update progress
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
} else if (tx->inputs[0].script_type ==
InputScriptType_SPENDP2SHWITNESS &&
!tx->inputs[0].has_multisig) {
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return;
}
// fixup normal p2pkh script into witness 0 p2wpkh script for p2sh
// we convert 76 A9 14 <digest> 88 AC to 16 00 14 <digest>
// P2SH input pushes witness 0 script
tx->inputs[0].script_sig.size = 0x17; // drops last 2 bytes.
tx->inputs[0].script_sig.bytes[0] =
0x16; // push 22 bytes; replaces OP_DUP
tx->inputs[0].script_sig.bytes[1] =
0x00; // witness 0 script ; replaces OP_HASH160
// digest is already in right place.
} else if (tx->inputs[0].script_type ==
InputScriptType_SPENDP2SHWITNESS) {
// Prepare P2SH witness script.
tx->inputs[0].script_sig.size = 0x23; // 35 bytes long:
tx->inputs[0].script_sig.bytes[0] =
0x22; // push 34 bytes (full witness script)
tx->inputs[0].script_sig.bytes[1] = 0x00; // witness 0 script
tx->inputs[0].script_sig.bytes[2] = 0x20; // push 32 bytes (digest)
// compute digest of multisig script
if (!compile_script_multisig_hash(coin, &tx->inputs[0].multisig,
tx->inputs[0].script_sig.bytes + 3)) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return;
}
} else {
// direct witness scripts require zero scriptSig
tx->inputs[0].script_sig.size = 0;
}
resp.serialized.serialized_tx.size = tx_serialize_input(
&to, &tx->inputs[0], resp.serialized.serialized_tx.bytes);
if (idx1 < inputs_count - 1) {
idx1++;
phase2_request_next_input();
} else {
idx1 = 0;
send_req_5_output();
}
return;
case STAGE_REQUEST_5_OUTPUT:
if (!signing_validate_output(&tx->outputs[0])) {
return;
}
if (compile_output(coin, &root, tx->outputs, &bin_output, false) <= 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile output"));
signing_abort();
return;
}
resp.has_serialized = true;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.size = tx_serialize_output(
&to, &bin_output, resp.serialized.serialized_tx.bytes);
if (idx1 < outputs_count - 1) {
idx1++;
send_req_5_output();
} else if (to.is_segwit) {
idx1 = 0;
send_req_segwit_witness();
} else {
send_req_finished();
signing_abort();
}
return;
case STAGE_REQUEST_SEGWIT_WITNESS:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
if (!signing_sign_segwit_input(&tx->inputs[0])) {
return;
}
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
if (idx1 < inputs_count - 1) {
idx1++;
send_req_segwit_witness();
} else {
send_req_finished();
signing_abort();
}
return;
#if !BITCOIN_ONLY
case STAGE_REQUEST_DECRED_WITNESS:
if (!signing_validate_input(&tx->inputs[0])) {
return;
}
progress =
500 + ((signatures * progress_step + idx2 * progress_meta_step) >>
PROGRESS_PRECISION);
if (idx1 == 0) {
// witness
tx_init(&to, inputs_count, outputs_count, version, lock_time, expiry, 0,
coin->curve->hasher_sign, coin->overwintered, version_group_id,
timestamp);
to.is_decred = true;
}
// witness hash
tx_init(&ti, inputs_count, outputs_count, version, lock_time, expiry, 0,
coin->curve->hasher_sign, coin->overwintered, version_group_id,
timestamp);
ti.version |= (DECRED_SERIALIZE_WITNESS_SIGNING << 16);
ti.is_decred = true;
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to compile input"));
signing_abort();
return;
}
for (idx2 = 0; idx2 < inputs_count; idx2++) {
uint32_t r = 0;
if (idx2 == idx1) {
r = tx_serialize_decred_witness_hash(&ti, &tx->inputs[0]);
} else {
r = tx_serialize_decred_witness_hash(&ti, NULL);
}
if (!r) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to serialize input"));
signing_abort();
return;
}
}
if (!signing_sign_decred_input(&tx->inputs[0])) {
return;
}
// since this took a longer time, update progress
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
if (idx1 < inputs_count - 1) {
idx1++;
send_req_decred_witness();
} else {
send_req_finished();
signing_abort();
}
return;
#endif
}
fsm_sendFailure(FailureType_Failure_ProcessError, _("Signing error"));
signing_abort();
}
void signing_abort(void) {
if (signing) {
layoutHome();
signing = false;
}
memzero(&root, sizeof(root));
memzero(&node, sizeof(node));
}