1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-18 20:38:10 +00:00
trezor-firmware/micropython/trezorhal/stm32_it.c
2017-02-24 13:19:00 +01:00

755 lines
21 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* Original template from ST Cube library. See below for header.
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/**
******************************************************************************
* @file Templates/Src/stm32f4xx_it.c
* @author MCD Application Team
* @version V1.0.1
* @date 26-February-2014
* @brief Main Interrupt Service Routines.
* This file provides template for all exceptions handler and
* peripherals interrupt service routine.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#include <stdio.h>
#include STM32_HAL_H
#include "py/mphal.h"
#include "pendsv.h"
#include "gccollect.h"
#define IRQ_ENTER(irq)
#define IRQ_EXIT(irq)
extern void __fatal_error(const char*);
extern PCD_HandleTypeDef pcd_fs_handle;
extern PCD_HandleTypeDef pcd_hs_handle;
/******************************************************************************/
/* Cortex-M4 Processor Exceptions Handlers */
/******************************************************************************/
// Set the following to 1 to get some more information on the Hard Fault
// More information about decoding the fault registers can be found here:
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
STATIC char *fmt_hex(uint32_t val, char *buf) {
const char *hexDig = "0123456789abcdef";
buf[0] = hexDig[(val >> 28) & 0x0f];
buf[1] = hexDig[(val >> 24) & 0x0f];
buf[2] = hexDig[(val >> 20) & 0x0f];
buf[3] = hexDig[(val >> 16) & 0x0f];
buf[4] = hexDig[(val >> 12) & 0x0f];
buf[5] = hexDig[(val >> 8) & 0x0f];
buf[6] = hexDig[(val >> 4) & 0x0f];
buf[7] = hexDig[(val >> 0) & 0x0f];
buf[8] = '\0';
return buf;
}
STATIC void print_reg(const char *label, uint32_t val) {
char hexStr[9];
mp_hal_stdout_tx_str(label);
mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
mp_hal_stdout_tx_str("\r\n");
}
STATIC void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) {
char hex_str[9];
mp_hal_stdout_tx_str(label);
mp_hal_stdout_tx_str(fmt_hex(val1, hex_str));
mp_hal_stdout_tx_str(" ");
mp_hal_stdout_tx_str(fmt_hex(val2, hex_str));
mp_hal_stdout_tx_str("\r\n");
}
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
// to an exception, that the registers will be in the following order on the
// stack: R0, R1, R2, R3, R12, LR, PC, XPSR
typedef struct {
uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr;
} ExceptionRegisters_t;
int pyb_hard_fault_debug = 1;
void HardFault_C_Handler(ExceptionRegisters_t *regs) {
if (!pyb_hard_fault_debug) {
NVIC_SystemReset();
}
// We need to disable the USB so it doesn't try to write data out on
// the VCP and then block indefinitely waiting for the buffer to drain.
// pyb_usb_flags = 0;
mp_hal_stdout_tx_str("HardFault\r\n");
print_reg("R0 ", regs->r0);
print_reg("R1 ", regs->r1);
print_reg("R2 ", regs->r2);
print_reg("R3 ", regs->r3);
print_reg("R12 ", regs->r12);
print_reg("SP ", (uint32_t)regs);
print_reg("LR ", regs->lr);
print_reg("PC ", regs->pc);
print_reg("XPSR ", regs->xpsr);
uint32_t cfsr = SCB->CFSR;
print_reg("HFSR ", SCB->HFSR);
print_reg("CFSR ", cfsr);
if (cfsr & 0x80) {
print_reg("MMFAR ", SCB->MMFAR);
}
if (cfsr & 0x8000) {
print_reg("BFAR ", SCB->BFAR);
}
if ((void*)&_ram_start <= (void*)regs && (void*)regs < (void*)&_ram_end) {
mp_hal_stdout_tx_str("Stack:\r\n");
uint32_t *stack_top = &_estack;
if ((void*)regs < (void*)&_heap_end) {
// stack not in static stack area so limit the amount we print
stack_top = (uint32_t*)regs + 32;
}
for (uint32_t *sp = (uint32_t*)regs; sp < stack_top; ++sp) {
print_hex_hex(" ", (uint32_t)sp, *sp);
}
}
/* Go to infinite loop when Hard Fault exception occurs */
while (1) {
__fatal_error("HardFault");
}
}
// Naked functions have no compiler generated gunk, so are the best thing to
// use for asm functions.
__attribute__((naked))
void HardFault_Handler(void) {
// From the ARMv7M Architecture Reference Manual, section B.1.5.6
// on entry to the Exception, the LR register contains, amongst other
// things, the value of CONTROL.SPSEL. This can be found in bit 3.
//
// If CONTROL.SPSEL is 0, then the exception was stacked up using the
// main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
// was stacked up using the process stack pointer (aka PSP).
__asm volatile(
" tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use.
" ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else
" mrseq r0, msp \n" // Make R0 point to main stack pointer
" mrsne r0, psp \n" // Make R0 point to process stack pointer
" b HardFault_C_Handler \n" // Off to C land
);
}
/**
* @brief This function handles NMI exception.
* @param None
* @retval None
*/
void NMI_Handler(void) {
}
/**
* @brief This function handles Memory Manage exception.
* @param None
* @retval None
*/
void MemManage_Handler(void) {
/* Go to infinite loop when Memory Manage exception occurs */
while (1) {
__fatal_error("MemManage");
}
}
/**
* @brief This function handles Bus Fault exception.
* @param None
* @retval None
*/
void BusFault_Handler(void) {
/* Go to infinite loop when Bus Fault exception occurs */
while (1) {
__fatal_error("BusFault");
}
}
/**
* @brief This function handles Usage Fault exception.
* @param None
* @retval None
*/
void UsageFault_Handler(void) {
/* Go to infinite loop when Usage Fault exception occurs */
while (1) {
__fatal_error("UsageFault");
}
}
/**
* @brief This function handles SVCall exception.
* @param None
* @retval None
*/
void SVC_Handler(void) {
}
/**
* @brief This function handles Debug Monitor exception.
* @param None
* @retval None
*/
void DebugMon_Handler(void) {
}
/**
* @brief This function handles PendSVC exception.
* @param None
* @retval None
*/
void PendSV_Handler(void) {
pendsv_isr_handler();
}
/**
* @brief This function handles SysTick Handler.
* @param None
* @retval None
*/
void SysTick_Handler(void) {
// Instead of calling HAL_IncTick we do the increment here of the counter.
// This is purely for efficiency, since SysTick is called 1000 times per
// second at the highest interrupt priority.
// Note: we don't need uwTick to be declared volatile here because this is
// the only place where it can be modified, and the code is more efficient
// without the volatile specifier.
extern uint32_t uwTick;
uwTick += 1;
// Read the systick control regster. This has the side effect of clearing
// the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
// work properly.
SysTick->CTRL;
// Right now we have the storage and DMA controllers to process during
// this interrupt and we use custom dispatch handlers. If this needs to
// be generalised in the future then a dispatch table can be used as
// follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
// if (STORAGE_IDLE_TICK(uwTick)) {
// NVIC->STIR = FLASH_IRQn;
// }
// if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
// dma_idle_handler(uwTick);
// }
}
/******************************************************************************/
/* STM32F4xx Peripherals Interrupt Handlers */
/* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */
/* available peripheral interrupt handler's name please refer to the startup */
/* file (startup_stm32f4xx.s). */
/******************************************************************************/
/**
* @brief This function handles USB-On-The-Go FS global interrupt request.
* @param None
* @retval None
*/
#if defined(USE_USB_FS)
void OTG_FS_IRQHandler(void) {
IRQ_ENTER(OTG_FS_IRQn);
HAL_PCD_IRQHandler(&pcd_fs_handle);
IRQ_EXIT(OTG_FS_IRQn);
}
#endif
#if defined(USE_USB_HS)
void OTG_HS_IRQHandler(void) {
IRQ_ENTER(OTG_HS_IRQn);
HAL_PCD_IRQHandler(&pcd_hs_handle);
IRQ_EXIT(OTG_HS_IRQn);
}
#endif
#if defined(USE_USB_FS) || defined(USE_USB_HS)
/**
* @brief This function handles USB OTG Common FS/HS Wakeup functions.
* @param *pcd_handle for FS or HS
* @retval None
*/
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
if (pcd_handle->Init.low_power_enable) {
/* Reset SLEEPDEEP bit of Cortex System Control Register */
SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
PLL as system clock source (HSE and PLL are disabled in STOP mode) */
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
/* Wait till HSE is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
{}
/* Enable the main PLL. */
__HAL_RCC_PLL_ENABLE();
/* Wait till PLL is ready */
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
{}
/* Select PLL as SYSCLK */
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
{}
/* ungate PHY clock */
__HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
}
}
#endif
#if defined(USE_USB_FS)
/**
* @brief This function handles USB OTG FS Wakeup IRQ Handler.
* @param None
* @retval None
*/
void OTG_FS_WKUP_IRQHandler(void) {
IRQ_ENTER(OTG_FS_WKUP_IRQn);
OTG_CMD_WKUP_Handler(&pcd_fs_handle);
/* Clear EXTI pending Bit*/
__HAL_USB_FS_EXTI_CLEAR_FLAG();
IRQ_EXIT(OTG_FS_WKUP_IRQn);
}
#endif
#if defined(USE_USB_HS)
/**
* @brief This function handles USB OTG HS Wakeup IRQ Handler.
* @param None
* @retval None
*/
void OTG_HS_WKUP_IRQHandler(void) {
IRQ_ENTER(OTG_HS_WKUP_IRQn);
OTG_CMD_WKUP_Handler(&pcd_hs_handle);
/* Clear EXTI pending Bit*/
__HAL_USB_HS_EXTI_CLEAR_FLAG();
IRQ_EXIT(OTG_HS_WKUP_IRQn);
}
#endif
/**
* @brief This function handles PPP interrupt request.
* @param None
* @retval None
*/
/*void PPP_IRQHandler(void)
{
}*/
// Handle a flash (erase/program) interrupt.
void FLASH_IRQHandler(void) {
IRQ_ENTER(FLASH_IRQn);
// This calls the real flash IRQ handler, if needed
/*
uint32_t flash_cr = FLASH->CR;
if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
HAL_FLASH_IRQHandler();
}
*/
// This call the storage IRQ handler, to check if the flash cache needs flushing
// storage_irq_handler();
IRQ_EXIT(FLASH_IRQn);
}
/**
* @brief These functions handle the EXTI interrupt requests.
* @param None
* @retval None
*/
// void EXTI0_IRQHandler(void) {
// IRQ_ENTER(EXTI0_IRQn);
// Handle_EXTI_Irq(0);
// IRQ_EXIT(EXTI0_IRQn);
// }
// void EXTI1_IRQHandler(void) {
// IRQ_ENTER(EXTI1_IRQn);
// Handle_EXTI_Irq(1);
// IRQ_EXIT(EXTI1_IRQn);
// }
// void EXTI2_IRQHandler(void) {
// IRQ_ENTER(EXTI2_IRQn);
// Handle_EXTI_Irq(2);
// IRQ_EXIT(EXTI2_IRQn);
// }
// void EXTI3_IRQHandler(void) {
// IRQ_ENTER(EXTI3_IRQn);
// Handle_EXTI_Irq(3);
// IRQ_EXIT(EXTI3_IRQn);
// }
// void EXTI4_IRQHandler(void) {
// IRQ_ENTER(EXTI4_IRQn);
// Handle_EXTI_Irq(4);
// IRQ_EXIT(EXTI4_IRQn);
// }
// void EXTI9_5_IRQHandler(void) {
// IRQ_ENTER(EXTI9_5_IRQn);
// Handle_EXTI_Irq(5);
// Handle_EXTI_Irq(6);
// Handle_EXTI_Irq(7);
// Handle_EXTI_Irq(8);
// Handle_EXTI_Irq(9);
// IRQ_EXIT(EXTI9_5_IRQn);
// }
// void EXTI15_10_IRQHandler(void) {
// IRQ_ENTER(EXTI15_10_IRQn);
// Handle_EXTI_Irq(10);
// Handle_EXTI_Irq(11);
// Handle_EXTI_Irq(12);
// Handle_EXTI_Irq(13);
// Handle_EXTI_Irq(14);
// Handle_EXTI_Irq(15);
// IRQ_EXIT(EXTI15_10_IRQn);
// }
// void PVD_IRQHandler(void) {
// IRQ_ENTER(PVD_IRQn);
// Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
// IRQ_EXIT(PVD_IRQn);
// }
// #if defined(MCU_SERIES_L4)
// void PVD_PVM_IRQHandler(void) {
// IRQ_ENTER(PVD_PVM_IRQn);
// Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
// IRQ_EXIT(PVD_PVM_IRQn);
// }
// #endif
// void RTC_Alarm_IRQHandler(void) {
// IRQ_ENTER(RTC_Alarm_IRQn);
// Handle_EXTI_Irq(EXTI_RTC_ALARM);
// IRQ_EXIT(RTC_Alarm_IRQn);
// }
// #if defined(ETH) // The 407 has ETH, the 405 doesn't
// void ETH_WKUP_IRQHandler(void) {
// IRQ_ENTER(ETH_WKUP_IRQn);
// Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
// IRQ_EXIT(ETH_WKUP_IRQn);
// }
// #endif
// void TAMP_STAMP_IRQHandler(void) {
// IRQ_ENTER(TAMP_STAMP_IRQn);
// Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
// IRQ_EXIT(TAMP_STAMP_IRQn);
// }
// void RTC_WKUP_IRQHandler(void) {
// IRQ_ENTER(RTC_WKUP_IRQn);
// RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
// Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
// IRQ_EXIT(RTC_WKUP_IRQn);
// }
// void TIM1_BRK_TIM9_IRQHandler(void) {
// IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
// timer_irq_handler(9);
// IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
// }
// #if defined(MCU_SERIES_L4)
// void TIM1_BRK_TIM15_IRQHandler(void) {
// IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
// timer_irq_handler(15);
// IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
// }
// #endif
// void TIM1_UP_TIM10_IRQHandler(void) {
// IRQ_ENTER(TIM1_UP_TIM10_IRQn);
// timer_irq_handler(1);
// timer_irq_handler(10);
// IRQ_EXIT(TIM1_UP_TIM10_IRQn);
// }
// #if defined(MCU_SERIES_L4)
// void TIM1_UP_TIM16_IRQHandler(void) {
// IRQ_ENTER(TIM1_UP_TIM16_IRQn);
// timer_irq_handler(1);
// timer_irq_handler(16);
// IRQ_EXIT(TIM1_UP_TIM16_IRQn);
// }
// #endif
// void TIM1_TRG_COM_TIM11_IRQHandler(void) {
// IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
// timer_irq_handler(11);
// IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
// }
// #if defined(MCU_SERIES_L4)
// void TIM1_TRG_COM_TIM17_IRQHandler(void) {
// IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
// timer_irq_handler(17);
// IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
// }
// #endif
// void TIM1_CC_IRQHandler(void) {
// IRQ_ENTER(TIM1_CC_IRQn);
// timer_irq_handler(1);
// IRQ_EXIT(TIM1_CC_IRQn);
// }
// void TIM2_IRQHandler(void) {
// IRQ_ENTER(TIM2_IRQn);
// timer_irq_handler(2);
// IRQ_EXIT(TIM2_IRQn);
// }
// void TIM3_IRQHandler(void) {
// IRQ_ENTER(TIM3_IRQn);
// timer_irq_handler(3);
// IRQ_EXIT(TIM3_IRQn);
// }
// void TIM4_IRQHandler(void) {
// IRQ_ENTER(TIM4_IRQn);
// timer_irq_handler(4);
// IRQ_EXIT(TIM4_IRQn);
// }
// void TIM5_IRQHandler(void) {
// IRQ_ENTER(TIM5_IRQn);
// timer_irq_handler(5);
// HAL_TIM_IRQHandler(&TIM5_Handle);
// IRQ_EXIT(TIM5_IRQn);
// }
// #if defined(TIM6) // STM32F401 doesn't have TIM6
// void TIM6_DAC_IRQHandler(void) {
// IRQ_ENTER(TIM6_DAC_IRQn);
// timer_irq_handler(6);
// IRQ_EXIT(TIM6_DAC_IRQn);
// }
// #endif
// #if defined(TIM7) // STM32F401 doesn't have TIM7
// void TIM7_IRQHandler(void) {
// IRQ_ENTER(TIM7_IRQn);
// timer_irq_handler(7);
// IRQ_EXIT(TIM7_IRQn);
// }
// #endif
// #if defined(TIM8) // STM32F401 doesn't have TIM8
// void TIM8_BRK_TIM12_IRQHandler(void) {
// IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
// timer_irq_handler(12);
// IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
// }
// void TIM8_UP_TIM13_IRQHandler(void) {
// IRQ_ENTER(TIM8_UP_TIM13_IRQn);
// timer_irq_handler(8);
// timer_irq_handler(13);
// IRQ_EXIT(TIM8_UP_TIM13_IRQn);
// }
// #if defined(MCU_SERIES_L4)
// void TIM8_UP_IRQHandler(void) {
// IRQ_ENTER(TIM8_UP_IRQn);
// timer_irq_handler(8);
// IRQ_EXIT(TIM8_UP_IRQn);
// }
// #endif
// void TIM8_CC_IRQHandler(void) {
// IRQ_ENTER(TIM8_CC_IRQn);
// timer_irq_handler(8);
// IRQ_EXIT(TIM8_CC_IRQn);
// }
// void TIM8_TRG_COM_TIM14_IRQHandler(void) {
// IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
// timer_irq_handler(14);
// IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
// }
// #endif
// // UART/USART IRQ handlers
// void USART1_IRQHandler(void) {
// IRQ_ENTER(USART1_IRQn);
// uart_irq_handler(1);
// IRQ_EXIT(USART1_IRQn);
// }
// void USART2_IRQHandler(void) {
// IRQ_ENTER(USART2_IRQn);
// uart_irq_handler(2);
// IRQ_EXIT(USART2_IRQn);
// }
// void USART3_IRQHandler(void) {
// IRQ_ENTER(USART3_IRQn);
// uart_irq_handler(3);
// IRQ_EXIT(USART3_IRQn);
// }
// void UART4_IRQHandler(void) {
// IRQ_ENTER(UART4_IRQn);
// uart_irq_handler(4);
// IRQ_EXIT(UART4_IRQn);
// }
// void UART5_IRQHandler(void) {
// IRQ_ENTER(UART5_IRQn);
// uart_irq_handler(5);
// IRQ_EXIT(UART5_IRQn);
// }
// void USART6_IRQHandler(void) {
// IRQ_ENTER(USART6_IRQn);
// uart_irq_handler(6);
// IRQ_EXIT(USART6_IRQn);
// }
// #if defined(MICROPY_HW_UART7_TX)
// void UART7_IRQHandler(void) {
// IRQ_ENTER(UART7_IRQn);
// uart_irq_handler(7);
// IRQ_EXIT(UART7_IRQn);
// }
// #endif
// #if defined(MICROPY_HW_UART8_TX)
// void UART8_IRQHandler(void) {
// IRQ_ENTER(UART8_IRQn);
// uart_irq_handler(8);
// IRQ_EXIT(UART8_IRQn);
// }
// #endif
// #if MICROPY_HW_ENABLE_CAN
// void CAN1_RX0_IRQHandler(void) {
// IRQ_ENTER(CAN1_RX0_IRQn);
// can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
// IRQ_EXIT(CAN1_RX0_IRQn);
// }
// void CAN1_RX1_IRQHandler(void) {
// IRQ_ENTER(CAN1_RX1_IRQn);
// can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
// IRQ_EXIT(CAN1_RX1_IRQn);
// }
// void CAN2_RX0_IRQHandler(void) {
// IRQ_ENTER(CAN2_RX0_IRQn);
// can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
// IRQ_EXIT(CAN2_RX0_IRQn);
// }
// void CAN2_RX1_IRQHandler(void) {
// IRQ_ENTER(CAN2_RX1_IRQn);
// can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
// IRQ_EXIT(CAN2_RX1_IRQn);
// }
// #endif // MICROPY_HW_ENABLE_CAN
#if defined(MICROPY_HW_I2C1_SCL)
extern I2C_HandleTypeDef *i2c_handle;
void I2C1_EV_IRQHandler(void) {
IRQ_ENTER(I2C1_EV_IRQn);
HAL_I2C_EV_IRQHandler(i2c_handle);
IRQ_EXIT(I2C1_EV_IRQn);
}
void I2C1_ER_IRQHandler(void) {
IRQ_ENTER(I2C1_ER_IRQn);
HAL_I2C_ER_IRQHandler(i2c_handle);
IRQ_EXIT(I2C1_ER_IRQn);
}
#endif // defined(MICROPY_HW_I2C1_SCL)