/* * This file is part of the Micro Python project, http://micropython.org/ * * Original template from ST Cube library. See below for header. * * The MIT License (MIT) * * Copyright (c) 2013, 2014 Damien P. George * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /** ****************************************************************************** * @file Templates/Src/stm32f4xx_it.c * @author MCD Application Team * @version V1.0.1 * @date 26-February-2014 * @brief Main Interrupt Service Routines. * This file provides template for all exceptions handler and * peripherals interrupt service routine. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ #include #include STM32_HAL_H #include "py/mphal.h" #include "pendsv.h" #include "gccollect.h" #define IRQ_ENTER(irq) #define IRQ_EXIT(irq) extern void __fatal_error(const char*); extern PCD_HandleTypeDef pcd_fs_handle; extern PCD_HandleTypeDef pcd_hs_handle; /******************************************************************************/ /* Cortex-M4 Processor Exceptions Handlers */ /******************************************************************************/ // Set the following to 1 to get some more information on the Hard Fault // More information about decoding the fault registers can be found here: // http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html STATIC char *fmt_hex(uint32_t val, char *buf) { const char *hexDig = "0123456789abcdef"; buf[0] = hexDig[(val >> 28) & 0x0f]; buf[1] = hexDig[(val >> 24) & 0x0f]; buf[2] = hexDig[(val >> 20) & 0x0f]; buf[3] = hexDig[(val >> 16) & 0x0f]; buf[4] = hexDig[(val >> 12) & 0x0f]; buf[5] = hexDig[(val >> 8) & 0x0f]; buf[6] = hexDig[(val >> 4) & 0x0f]; buf[7] = hexDig[(val >> 0) & 0x0f]; buf[8] = '\0'; return buf; } STATIC void print_reg(const char *label, uint32_t val) { char hexStr[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val, hexStr)); mp_hal_stdout_tx_str("\r\n"); } STATIC void print_hex_hex(const char *label, uint32_t val1, uint32_t val2) { char hex_str[9]; mp_hal_stdout_tx_str(label); mp_hal_stdout_tx_str(fmt_hex(val1, hex_str)); mp_hal_stdout_tx_str(" "); mp_hal_stdout_tx_str(fmt_hex(val2, hex_str)); mp_hal_stdout_tx_str("\r\n"); } // The ARMv7M Architecture manual (section B.1.5.6) says that upon entry // to an exception, that the registers will be in the following order on the // stack: R0, R1, R2, R3, R12, LR, PC, XPSR typedef struct { uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr; } ExceptionRegisters_t; int pyb_hard_fault_debug = 1; void HardFault_C_Handler(ExceptionRegisters_t *regs) { if (!pyb_hard_fault_debug) { NVIC_SystemReset(); } // We need to disable the USB so it doesn't try to write data out on // the VCP and then block indefinitely waiting for the buffer to drain. // pyb_usb_flags = 0; mp_hal_stdout_tx_str("HardFault\r\n"); print_reg("R0 ", regs->r0); print_reg("R1 ", regs->r1); print_reg("R2 ", regs->r2); print_reg("R3 ", regs->r3); print_reg("R12 ", regs->r12); print_reg("SP ", (uint32_t)regs); print_reg("LR ", regs->lr); print_reg("PC ", regs->pc); print_reg("XPSR ", regs->xpsr); uint32_t cfsr = SCB->CFSR; print_reg("HFSR ", SCB->HFSR); print_reg("CFSR ", cfsr); if (cfsr & 0x80) { print_reg("MMFAR ", SCB->MMFAR); } if (cfsr & 0x8000) { print_reg("BFAR ", SCB->BFAR); } if ((void*)&_ram_start <= (void*)regs && (void*)regs < (void*)&_ram_end) { mp_hal_stdout_tx_str("Stack:\r\n"); uint32_t *stack_top = &_estack; if ((void*)regs < (void*)&_heap_end) { // stack not in static stack area so limit the amount we print stack_top = (uint32_t*)regs + 32; } for (uint32_t *sp = (uint32_t*)regs; sp < stack_top; ++sp) { print_hex_hex(" ", (uint32_t)sp, *sp); } } /* Go to infinite loop when Hard Fault exception occurs */ while (1) { __fatal_error("HardFault"); } } // Naked functions have no compiler generated gunk, so are the best thing to // use for asm functions. __attribute__((naked)) void HardFault_Handler(void) { // From the ARMv7M Architecture Reference Manual, section B.1.5.6 // on entry to the Exception, the LR register contains, amongst other // things, the value of CONTROL.SPSEL. This can be found in bit 3. // // If CONTROL.SPSEL is 0, then the exception was stacked up using the // main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception // was stacked up using the process stack pointer (aka PSP). __asm volatile( " tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use. " ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else " mrseq r0, msp \n" // Make R0 point to main stack pointer " mrsne r0, psp \n" // Make R0 point to process stack pointer " b HardFault_C_Handler \n" // Off to C land ); } /** * @brief This function handles NMI exception. * @param None * @retval None */ void NMI_Handler(void) { } /** * @brief This function handles Memory Manage exception. * @param None * @retval None */ void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) { __fatal_error("MemManage"); } } /** * @brief This function handles Bus Fault exception. * @param None * @retval None */ void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) { __fatal_error("BusFault"); } } /** * @brief This function handles Usage Fault exception. * @param None * @retval None */ void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) { __fatal_error("UsageFault"); } } /** * @brief This function handles SVCall exception. * @param None * @retval None */ void SVC_Handler(void) { } /** * @brief This function handles Debug Monitor exception. * @param None * @retval None */ void DebugMon_Handler(void) { } /** * @brief This function handles PendSVC exception. * @param None * @retval None */ void PendSV_Handler(void) { pendsv_isr_handler(); } /** * @brief This function handles SysTick Handler. * @param None * @retval None */ void SysTick_Handler(void) { // Instead of calling HAL_IncTick we do the increment here of the counter. // This is purely for efficiency, since SysTick is called 1000 times per // second at the highest interrupt priority. // Note: we don't need uwTick to be declared volatile here because this is // the only place where it can be modified, and the code is more efficient // without the volatile specifier. extern uint32_t uwTick; uwTick += 1; // Read the systick control regster. This has the side effect of clearing // the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds // work properly. SysTick->CTRL; // Right now we have the storage and DMA controllers to process during // this interrupt and we use custom dispatch handlers. If this needs to // be generalised in the future then a dispatch table can be used as // follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))(); // if (STORAGE_IDLE_TICK(uwTick)) { // NVIC->STIR = FLASH_IRQn; // } // if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) { // dma_idle_handler(uwTick); // } } /******************************************************************************/ /* STM32F4xx Peripherals Interrupt Handlers */ /* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */ /* available peripheral interrupt handler's name please refer to the startup */ /* file (startup_stm32f4xx.s). */ /******************************************************************************/ /** * @brief This function handles USB-On-The-Go FS global interrupt request. * @param None * @retval None */ #if defined(USE_USB_FS) void OTG_FS_IRQHandler(void) { IRQ_ENTER(OTG_FS_IRQn); HAL_PCD_IRQHandler(&pcd_fs_handle); IRQ_EXIT(OTG_FS_IRQn); } #endif #if defined(USE_USB_HS) void OTG_HS_IRQHandler(void) { IRQ_ENTER(OTG_HS_IRQn); HAL_PCD_IRQHandler(&pcd_hs_handle); IRQ_EXIT(OTG_HS_IRQn); } #endif #if defined(USE_USB_FS) || defined(USE_USB_HS) /** * @brief This function handles USB OTG Common FS/HS Wakeup functions. * @param *pcd_handle for FS or HS * @retval None */ STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) { if (pcd_handle->Init.low_power_enable) { /* Reset SLEEPDEEP bit of Cortex System Control Register */ SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk)); /* Configures system clock after wake-up from STOP: enable HSE, PLL and select PLL as system clock source (HSE and PLL are disabled in STOP mode) */ __HAL_RCC_HSE_CONFIG(RCC_HSE_ON); /* Wait till HSE is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) {} /* Enable the main PLL. */ __HAL_RCC_PLL_ENABLE(); /* Wait till PLL is ready */ while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) {} /* Select PLL as SYSCLK */ MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK); while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {} /* ungate PHY clock */ __HAL_PCD_UNGATE_PHYCLOCK(pcd_handle); } } #endif #if defined(USE_USB_FS) /** * @brief This function handles USB OTG FS Wakeup IRQ Handler. * @param None * @retval None */ void OTG_FS_WKUP_IRQHandler(void) { IRQ_ENTER(OTG_FS_WKUP_IRQn); OTG_CMD_WKUP_Handler(&pcd_fs_handle); /* Clear EXTI pending Bit*/ __HAL_USB_FS_EXTI_CLEAR_FLAG(); IRQ_EXIT(OTG_FS_WKUP_IRQn); } #endif #if defined(USE_USB_HS) /** * @brief This function handles USB OTG HS Wakeup IRQ Handler. * @param None * @retval None */ void OTG_HS_WKUP_IRQHandler(void) { IRQ_ENTER(OTG_HS_WKUP_IRQn); OTG_CMD_WKUP_Handler(&pcd_hs_handle); /* Clear EXTI pending Bit*/ __HAL_USB_HS_EXTI_CLEAR_FLAG(); IRQ_EXIT(OTG_HS_WKUP_IRQn); } #endif /** * @brief This function handles PPP interrupt request. * @param None * @retval None */ /*void PPP_IRQHandler(void) { }*/ // Handle a flash (erase/program) interrupt. void FLASH_IRQHandler(void) { IRQ_ENTER(FLASH_IRQn); // This calls the real flash IRQ handler, if needed /* uint32_t flash_cr = FLASH->CR; if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) { HAL_FLASH_IRQHandler(); } */ // This call the storage IRQ handler, to check if the flash cache needs flushing // storage_irq_handler(); IRQ_EXIT(FLASH_IRQn); } /** * @brief These functions handle the EXTI interrupt requests. * @param None * @retval None */ // void EXTI0_IRQHandler(void) { // IRQ_ENTER(EXTI0_IRQn); // Handle_EXTI_Irq(0); // IRQ_EXIT(EXTI0_IRQn); // } // void EXTI1_IRQHandler(void) { // IRQ_ENTER(EXTI1_IRQn); // Handle_EXTI_Irq(1); // IRQ_EXIT(EXTI1_IRQn); // } // void EXTI2_IRQHandler(void) { // IRQ_ENTER(EXTI2_IRQn); // Handle_EXTI_Irq(2); // IRQ_EXIT(EXTI2_IRQn); // } // void EXTI3_IRQHandler(void) { // IRQ_ENTER(EXTI3_IRQn); // Handle_EXTI_Irq(3); // IRQ_EXIT(EXTI3_IRQn); // } // void EXTI4_IRQHandler(void) { // IRQ_ENTER(EXTI4_IRQn); // Handle_EXTI_Irq(4); // IRQ_EXIT(EXTI4_IRQn); // } // void EXTI9_5_IRQHandler(void) { // IRQ_ENTER(EXTI9_5_IRQn); // Handle_EXTI_Irq(5); // Handle_EXTI_Irq(6); // Handle_EXTI_Irq(7); // Handle_EXTI_Irq(8); // Handle_EXTI_Irq(9); // IRQ_EXIT(EXTI9_5_IRQn); // } // void EXTI15_10_IRQHandler(void) { // IRQ_ENTER(EXTI15_10_IRQn); // Handle_EXTI_Irq(10); // Handle_EXTI_Irq(11); // Handle_EXTI_Irq(12); // Handle_EXTI_Irq(13); // Handle_EXTI_Irq(14); // Handle_EXTI_Irq(15); // IRQ_EXIT(EXTI15_10_IRQn); // } // void PVD_IRQHandler(void) { // IRQ_ENTER(PVD_IRQn); // Handle_EXTI_Irq(EXTI_PVD_OUTPUT); // IRQ_EXIT(PVD_IRQn); // } // #if defined(MCU_SERIES_L4) // void PVD_PVM_IRQHandler(void) { // IRQ_ENTER(PVD_PVM_IRQn); // Handle_EXTI_Irq(EXTI_PVD_OUTPUT); // IRQ_EXIT(PVD_PVM_IRQn); // } // #endif // void RTC_Alarm_IRQHandler(void) { // IRQ_ENTER(RTC_Alarm_IRQn); // Handle_EXTI_Irq(EXTI_RTC_ALARM); // IRQ_EXIT(RTC_Alarm_IRQn); // } // #if defined(ETH) // The 407 has ETH, the 405 doesn't // void ETH_WKUP_IRQHandler(void) { // IRQ_ENTER(ETH_WKUP_IRQn); // Handle_EXTI_Irq(EXTI_ETH_WAKEUP); // IRQ_EXIT(ETH_WKUP_IRQn); // } // #endif // void TAMP_STAMP_IRQHandler(void) { // IRQ_ENTER(TAMP_STAMP_IRQn); // Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP); // IRQ_EXIT(TAMP_STAMP_IRQn); // } // void RTC_WKUP_IRQHandler(void) { // IRQ_ENTER(RTC_WKUP_IRQn); // RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag // Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback // IRQ_EXIT(RTC_WKUP_IRQn); // } // void TIM1_BRK_TIM9_IRQHandler(void) { // IRQ_ENTER(TIM1_BRK_TIM9_IRQn); // timer_irq_handler(9); // IRQ_EXIT(TIM1_BRK_TIM9_IRQn); // } // #if defined(MCU_SERIES_L4) // void TIM1_BRK_TIM15_IRQHandler(void) { // IRQ_ENTER(TIM1_BRK_TIM15_IRQn); // timer_irq_handler(15); // IRQ_EXIT(TIM1_BRK_TIM15_IRQn); // } // #endif // void TIM1_UP_TIM10_IRQHandler(void) { // IRQ_ENTER(TIM1_UP_TIM10_IRQn); // timer_irq_handler(1); // timer_irq_handler(10); // IRQ_EXIT(TIM1_UP_TIM10_IRQn); // } // #if defined(MCU_SERIES_L4) // void TIM1_UP_TIM16_IRQHandler(void) { // IRQ_ENTER(TIM1_UP_TIM16_IRQn); // timer_irq_handler(1); // timer_irq_handler(16); // IRQ_EXIT(TIM1_UP_TIM16_IRQn); // } // #endif // void TIM1_TRG_COM_TIM11_IRQHandler(void) { // IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn); // timer_irq_handler(11); // IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn); // } // #if defined(MCU_SERIES_L4) // void TIM1_TRG_COM_TIM17_IRQHandler(void) { // IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn); // timer_irq_handler(17); // IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn); // } // #endif // void TIM1_CC_IRQHandler(void) { // IRQ_ENTER(TIM1_CC_IRQn); // timer_irq_handler(1); // IRQ_EXIT(TIM1_CC_IRQn); // } // void TIM2_IRQHandler(void) { // IRQ_ENTER(TIM2_IRQn); // timer_irq_handler(2); // IRQ_EXIT(TIM2_IRQn); // } // void TIM3_IRQHandler(void) { // IRQ_ENTER(TIM3_IRQn); // timer_irq_handler(3); // IRQ_EXIT(TIM3_IRQn); // } // void TIM4_IRQHandler(void) { // IRQ_ENTER(TIM4_IRQn); // timer_irq_handler(4); // IRQ_EXIT(TIM4_IRQn); // } // void TIM5_IRQHandler(void) { // IRQ_ENTER(TIM5_IRQn); // timer_irq_handler(5); // HAL_TIM_IRQHandler(&TIM5_Handle); // IRQ_EXIT(TIM5_IRQn); // } // #if defined(TIM6) // STM32F401 doesn't have TIM6 // void TIM6_DAC_IRQHandler(void) { // IRQ_ENTER(TIM6_DAC_IRQn); // timer_irq_handler(6); // IRQ_EXIT(TIM6_DAC_IRQn); // } // #endif // #if defined(TIM7) // STM32F401 doesn't have TIM7 // void TIM7_IRQHandler(void) { // IRQ_ENTER(TIM7_IRQn); // timer_irq_handler(7); // IRQ_EXIT(TIM7_IRQn); // } // #endif // #if defined(TIM8) // STM32F401 doesn't have TIM8 // void TIM8_BRK_TIM12_IRQHandler(void) { // IRQ_ENTER(TIM8_BRK_TIM12_IRQn); // timer_irq_handler(12); // IRQ_EXIT(TIM8_BRK_TIM12_IRQn); // } // void TIM8_UP_TIM13_IRQHandler(void) { // IRQ_ENTER(TIM8_UP_TIM13_IRQn); // timer_irq_handler(8); // timer_irq_handler(13); // IRQ_EXIT(TIM8_UP_TIM13_IRQn); // } // #if defined(MCU_SERIES_L4) // void TIM8_UP_IRQHandler(void) { // IRQ_ENTER(TIM8_UP_IRQn); // timer_irq_handler(8); // IRQ_EXIT(TIM8_UP_IRQn); // } // #endif // void TIM8_CC_IRQHandler(void) { // IRQ_ENTER(TIM8_CC_IRQn); // timer_irq_handler(8); // IRQ_EXIT(TIM8_CC_IRQn); // } // void TIM8_TRG_COM_TIM14_IRQHandler(void) { // IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn); // timer_irq_handler(14); // IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn); // } // #endif // // UART/USART IRQ handlers // void USART1_IRQHandler(void) { // IRQ_ENTER(USART1_IRQn); // uart_irq_handler(1); // IRQ_EXIT(USART1_IRQn); // } // void USART2_IRQHandler(void) { // IRQ_ENTER(USART2_IRQn); // uart_irq_handler(2); // IRQ_EXIT(USART2_IRQn); // } // void USART3_IRQHandler(void) { // IRQ_ENTER(USART3_IRQn); // uart_irq_handler(3); // IRQ_EXIT(USART3_IRQn); // } // void UART4_IRQHandler(void) { // IRQ_ENTER(UART4_IRQn); // uart_irq_handler(4); // IRQ_EXIT(UART4_IRQn); // } // void UART5_IRQHandler(void) { // IRQ_ENTER(UART5_IRQn); // uart_irq_handler(5); // IRQ_EXIT(UART5_IRQn); // } // void USART6_IRQHandler(void) { // IRQ_ENTER(USART6_IRQn); // uart_irq_handler(6); // IRQ_EXIT(USART6_IRQn); // } // #if defined(MICROPY_HW_UART7_TX) // void UART7_IRQHandler(void) { // IRQ_ENTER(UART7_IRQn); // uart_irq_handler(7); // IRQ_EXIT(UART7_IRQn); // } // #endif // #if defined(MICROPY_HW_UART8_TX) // void UART8_IRQHandler(void) { // IRQ_ENTER(UART8_IRQn); // uart_irq_handler(8); // IRQ_EXIT(UART8_IRQn); // } // #endif // #if MICROPY_HW_ENABLE_CAN // void CAN1_RX0_IRQHandler(void) { // IRQ_ENTER(CAN1_RX0_IRQn); // can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0); // IRQ_EXIT(CAN1_RX0_IRQn); // } // void CAN1_RX1_IRQHandler(void) { // IRQ_ENTER(CAN1_RX1_IRQn); // can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1); // IRQ_EXIT(CAN1_RX1_IRQn); // } // void CAN2_RX0_IRQHandler(void) { // IRQ_ENTER(CAN2_RX0_IRQn); // can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0); // IRQ_EXIT(CAN2_RX0_IRQn); // } // void CAN2_RX1_IRQHandler(void) { // IRQ_ENTER(CAN2_RX1_IRQn); // can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1); // IRQ_EXIT(CAN2_RX1_IRQn); // } // #endif // MICROPY_HW_ENABLE_CAN #if defined(MICROPY_HW_I2C1_SCL) extern I2C_HandleTypeDef *i2c_handle; void I2C1_EV_IRQHandler(void) { IRQ_ENTER(I2C1_EV_IRQn); HAL_I2C_EV_IRQHandler(i2c_handle); IRQ_EXIT(I2C1_EV_IRQn); } void I2C1_ER_IRQHandler(void) { IRQ_ENTER(I2C1_ER_IRQn); HAL_I2C_ER_IRQHandler(i2c_handle); IRQ_EXIT(I2C1_ER_IRQn); } #endif // defined(MICROPY_HW_I2C1_SCL)