1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-12 18:49:07 +00:00

python: reformat python scripts using black

This commit is contained in:
Pavol Rusnak 2018-07-16 14:38:09 +02:00
parent 02a988cd26
commit 2de6d876a3
No known key found for this signature in database
GPG Key ID: 91F3B339B9A02A3D
3 changed files with 356 additions and 208 deletions

View File

@ -1,37 +1,39 @@
#!/usr/bin/python
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
from Cython.Distutils import build_ext
srcs = [
'nist256p1',
'base58',
'bignum',
'bip32',
'ecdsa',
'curve25519',
'hmac',
'rand',
'ripemd160',
'secp256k1',
'sha2',
"nist256p1",
"base58",
"bignum",
"bip32",
"ecdsa",
"curve25519",
"hmac",
"rand",
"ripemd160",
"secp256k1",
"sha2",
]
extensions = [
Extension('TrezorCrypto',
sources = ['TrezorCrypto.pyx', 'c.pxd'] + [ x + '.c' for x in srcs ],
extra_compile_args = [],
)
Extension(
"TrezorCrypto",
sources=["TrezorCrypto.pyx", "c.pxd"] + [x + ".c" for x in srcs],
extra_compile_args=[],
)
]
setup(
name = 'TrezorCrypto',
version = '0.0.0',
description = 'Cython wrapper around trezor-crypto library',
author = 'Pavol Rusnak',
author_email = 'stick@satoshilabs.com',
url = 'https://github.com/trezor/trezor-crypto',
cmdclass = {'build_ext': build_ext},
ext_modules = cythonize(extensions),
name="TrezorCrypto",
version="0.0.0",
description="Cython wrapper around trezor-crypto library",
author="Pavol Rusnak",
author_email="stick@satoshilabs.com",
url="https://github.com/trezor/trezor-crypto",
cmdclass={"build_ext": build_ext},
ext_modules=cythonize(extensions),
)

View File

@ -1,13 +1,15 @@
#!/usr/bin/py.test
import ctypes as c
import curve25519
import random
import ecdsa
import hashlib
import binascii
import ctypes as c
import hashlib
import os
import random
import curve25519
import ecdsa
import pytest
def bytes2num(s):
res = 0
for i, b in enumerate(reversed(bytearray(s))):
@ -15,10 +17,8 @@ def bytes2num(s):
return res
curves = {
'nist256p1': ecdsa.curves.NIST256p,
'secp256k1': ecdsa.curves.SECP256k1
}
curves = {"nist256p1": ecdsa.curves.NIST256p, "secp256k1": ecdsa.curves.SECP256k1}
class Point:
def __init__(self, name, x, y):
@ -26,30 +26,70 @@ class Point:
self.x = x
self.y = y
points = [
Point('secp256k1', 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798, 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
Point('secp256k1', 0x1, 0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee),
Point('secp256k1', 0x2, 0x66fbe727b2ba09e09f5a98d70a5efce8424c5fa425bbda1c511f860657b8535e),
Point('secp256k1', 0x1b,0x1adcea1cf831b0ad1653e769d1a229091d0cc68d4b0328691b9caacc76e37c90),
Point('nist256p1', 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296, 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5),
Point('nist256p1', 0x0, 0x66485c780e2f83d72433bd5d84a06bb6541c2af31dae871728bf856a174f93f4),
Point('nist256p1', 0x0, 0x99b7a386f1d07c29dbcc42a27b5f9449abe3d50de25178e8d7407a95e8b06c0b),
Point('nist256p1', 0xaf8bbdfe8cdd5577acbf345b543d28cf402f4e94d3865b97ea0787f2d3aa5d22,0x35802b8b376b995265918b078bc109c21a535176585c40f519aca52d6afc147c),
Point('nist256p1', 0x80000, 0x580610071f440f0dcc14a22e2d5d5afc1224c0cd11a3b4b51b8ecd2224ee1ce2)
Point(
"secp256k1",
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8,
),
Point(
"secp256k1",
0x1,
0x4218f20ae6c646b363db68605822fb14264ca8d2587fdd6fbc750d587e76a7ee,
),
Point(
"secp256k1",
0x2,
0x66fbe727b2ba09e09f5a98d70a5efce8424c5fa425bbda1c511f860657b8535e,
),
Point(
"secp256k1",
0x1b,
0x1adcea1cf831b0ad1653e769d1a229091d0cc68d4b0328691b9caacc76e37c90,
),
Point(
"nist256p1",
0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,
0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5,
),
Point(
"nist256p1",
0x0,
0x66485c780e2f83d72433bd5d84a06bb6541c2af31dae871728bf856a174f93f4,
),
Point(
"nist256p1",
0x0,
0x99b7a386f1d07c29dbcc42a27b5f9449abe3d50de25178e8d7407a95e8b06c0b,
),
Point(
"nist256p1",
0xaf8bbdfe8cdd5577acbf345b543d28cf402f4e94d3865b97ea0787f2d3aa5d22,
0x35802b8b376b995265918b078bc109c21a535176585c40f519aca52d6afc147c,
),
Point(
"nist256p1",
0x80000,
0x580610071f440f0dcc14a22e2d5d5afc1224c0cd11a3b4b51b8ecd2224ee1ce2,
),
]
random_iters = int(os.environ.get('ITERS', 1))
random_iters = int(os.environ.get("ITERS", 1))
DIR = os.path.abspath(os.path.dirname(__file__))
lib = c.cdll.LoadLibrary(os.path.join(DIR, 'libtrezor-crypto.so'))
lib = c.cdll.LoadLibrary(os.path.join(DIR, "libtrezor-crypto.so"))
class curve_info(c.Structure):
_fields_ = [("bip32_name", c.c_char_p),
("params", c.c_void_p)]
_fields_ = [("bip32_name", c.c_char_p), ("params", c.c_void_p)]
lib.get_curve_by_name.restype = c.POINTER(curve_info)
BIGNUM = c.c_uint32 * 9
class Random(random.Random):
def randbytes(self, n):
buf = (c.c_uint8 * n)()
@ -74,36 +114,40 @@ def int2bn(x, bn_type=BIGNUM):
def bn2int(b):
x = 0
for i in range(len(b)):
x += (b[i] << (30 * i))
x += b[i] << (30 * i)
return x
@pytest.fixture(params=range(random_iters))
def r(request):
seed = request.param
return Random(seed + int(os.environ.get('SEED', 0)))
return Random(seed + int(os.environ.get("SEED", 0)))
@pytest.fixture(params=list(sorted(curves)))
def curve(request):
name = request.param
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
assert curve_ptr, 'curve {} not found'.format(name)
assert curve_ptr, "curve {} not found".format(name)
curve_obj = curves[name]
curve_obj.ptr = c.c_void_p(curve_ptr)
curve_obj.p = curve_obj.curve.p() # shorthand
return curve_obj
@pytest.fixture(params=points)
def point(request):
name = request.param.curve
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
assert curve_ptr, 'curve {} not found'.format(name)
assert curve_ptr, "curve {} not found".format(name)
curve_obj = curves[name]
curve_obj.ptr = c.c_void_p(curve_ptr)
curve_obj.p = ecdsa.ellipticcurve.Point(curve_obj.curve, request.param.x, request.param.y)
curve_obj.p = ecdsa.ellipticcurve.Point(
curve_obj.curve, request.param.x, request.param.y
)
return curve_obj
def test_inverse(curve, r):
x = r.randrange(1, curve.p)
y = int2bn(x)
@ -138,7 +182,7 @@ def test_is_equal(curve, r):
def test_is_zero(curve, r):
x = r.randrange(0, curve.p);
x = r.randrange(0, curve.p)
assert lib.bn_is_zero(int2bn(x)) == (not x)
@ -156,7 +200,7 @@ def test_simple_comparisons():
def test_mult_half(curve, r):
x = r.randrange(0, 2*curve.p)
x = r.randrange(0, 2 * curve.p)
y = int2bn(x)
lib.bn_mult_half(y, int2bn(curve.p))
y = bn2int(y)
@ -172,7 +216,7 @@ def test_subtractmod(curve, r):
z = int2bn(0)
lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p))
z = bn2int(z)
z_ = x + 2*curve.p - y
z_ = x + 2 * curve.p - y
assert z == z_
@ -219,7 +263,7 @@ def test_multiply(curve, r):
p_ = int2bn(curve.p)
lib.bn_multiply(k, z_, p_)
z_ = bn2int(z_)
assert z_ < 2*curve.p
assert z_ < 2 * curve.p
if z_ >= curve.p:
z_ = z_ - curve.p
assert z_ == z
@ -249,36 +293,51 @@ def test_multiply2(curve, r):
def test_fast_mod(curve, r):
x = r.randrange(0, 128*curve.p)
x = r.randrange(0, 128 * curve.p)
y = int2bn(x)
lib.bn_fast_mod(y, int2bn(curve.p))
y = bn2int(y)
assert y < 2*curve.p
assert y < 2 * curve.p
if y >= curve.p:
y -= curve.p
assert x % curve.p == y
def test_mod(curve, r):
x = r.randrange(0, 2*curve.p)
x = r.randrange(0, 2 * curve.p)
y = int2bn(x)
lib.bn_mod(y, int2bn(curve.p))
assert bn2int(y) == x % curve.p
def test_mod_specific(curve):
p = curve.p
for x in [0, 1, 2, p - 2, p - 1, p, p + 1, p + 2, 2*p - 2, 2*p - 1]:
for x in [0, 1, 2, p - 2, p - 1, p, p + 1, p + 2, 2 * p - 2, 2 * p - 1]:
y = int2bn(x)
lib.bn_mod(y, int2bn(curve.p))
assert bn2int(y) == x % p
POINT = BIGNUM * 2
to_POINT = lambda p: POINT(int2bn(p.x()), int2bn(p.y()))
from_POINT = lambda p: (bn2int(p[0]), bn2int(p[1]))
def to_POINT(p):
return POINT(int2bn(p.x()), int2bn(p.y()))
def from_POINT(p):
return lambda p: (bn2int(p[0]), bn2int(p[1]))
JACOBIAN = BIGNUM * 3
to_JACOBIAN = lambda jp: JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
from_JACOBIAN = lambda p: (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
def to_JACOBIAN(jp):
return JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
def from_JACOBIAN(p):
return (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
def test_point_multiply(curve, r):
@ -294,7 +353,7 @@ def test_point_multiply(curve, r):
def test_point_add(curve, r):
p1 = r.randpoint(curve)
p2 = r.randpoint(curve)
#print '-' * 80
# print '-' * 80
q = p1 + p2
q1 = to_POINT(p1)
q2 = to_POINT(p2)
@ -332,7 +391,7 @@ def test_cond_negate(curve, r):
lib.conditional_negate(0, a, int2bn(curve.p))
assert bn2int(a) == x
lib.conditional_negate(-1, a, int2bn(curve.p))
assert bn2int(a) == 2*curve.p - x
assert bn2int(a) == 2 * curve.p - x
def test_jacobian_add(curve, r):
@ -348,6 +407,7 @@ def test_jacobian_add(curve, r):
p_ = p1 + p2
assert (p_.x(), p_.y()) == q
def test_jacobian_add_double(curve, r):
p1 = r.randpoint(curve)
p2 = p1
@ -361,6 +421,7 @@ def test_jacobian_add_double(curve, r):
p_ = p1 + p2
assert (p_.x(), p_.y()) == q
def test_jacobian_double(curve, r):
p = r.randpoint(curve)
p2 = p.double()
@ -373,6 +434,7 @@ def test_jacobian_double(curve, r):
q = from_POINT(q)
assert (p2.x(), p2.y()) == q
def sigdecode(sig, _):
return map(bytes2num, [sig[:32], sig[32:]])
@ -385,15 +447,17 @@ def test_sign(curve, r):
lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0), c.c_void_p(0))
exp = bytes2num(priv)
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve,
hashfunc=hashlib.sha256)
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve, hashfunc=hashlib.sha256)
vk = sk.get_verifying_key()
sig_ref = sk.sign_digest_deterministic(digest, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_string_canonize)
sig_ref = sk.sign_digest_deterministic(
digest, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_string_canonize
)
assert binascii.hexlify(sig) == binascii.hexlify(sig_ref)
assert vk.verify_digest(sig, digest, sigdecode)
def test_validate_pubkey(curve, r):
p = r.randpoint(curve)
assert lib.ecdsa_validate_pubkey(curve.ptr, to_POINT(p))
@ -431,9 +495,13 @@ def test_curve25519_pubkey(r):
def test_curve25519_scalarmult_from_gpg(r):
sec = binascii.unhexlify('4a1e76f133afb29dbc7860bcbc16d0e829009cc15c2f81ed26de1179b1d9c938')
pub = binascii.unhexlify('5d6fc75c016e85b17f54e0128a216d5f9229f25bac1ec85cecab8daf48621b31')
sec = binascii.unhexlify(
"4a1e76f133afb29dbc7860bcbc16d0e829009cc15c2f81ed26de1179b1d9c938"
)
pub = binascii.unhexlify(
"5d6fc75c016e85b17f54e0128a216d5f9229f25bac1ec85cecab8daf48621b31"
)
res = r.randbytes(32)
lib.curve25519_scalarmult(res, sec[::-1], pub[::-1])
expected = 'a93dbdb23e5c99da743e203bd391af79f2b83fb8d0fd6ec813371c71f08f2d4d'
expected = "a93dbdb23e5c99da743e203bd391af79f2b83fb8d0fd6ec813371c71f08f2d4d"
assert binascii.hexlify(bytearray(res)) == bytes(expected, "ascii")

View File

@ -1,46 +1,47 @@
#!/usr/bin/python
import ctypes
import json
import os
from binascii import hexlify, unhexlify
import pytest
from pyasn1.codec.ber.decoder import decode as ber_decode
from pyasn1.codec.der.decoder import decode as der_decode
from pyasn1.codec.der.encoder import encode as der_encode
from pyasn1.codec.ber.decoder import decode as ber_decode
from pyasn1.type import univ, namedtype
from binascii import unhexlify, hexlify
import json
import ctypes
import pytest
from pyasn1.type import namedtype, univ
class EcSignature(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('r', univ.Integer()),
namedtype.NamedType('s', univ.Integer())
namedtype.NamedType("r", univ.Integer()),
namedtype.NamedType("s", univ.Integer()),
)
class EcKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_type', univ.ObjectIdentifier()),
namedtype.NamedType('curve_name', univ.ObjectIdentifier())
namedtype.NamedType("key_type", univ.ObjectIdentifier()),
namedtype.NamedType("curve_name", univ.ObjectIdentifier()),
)
class EcPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_info', EcKeyInfo()),
namedtype.NamedType('public_key', univ.BitString())
namedtype.NamedType("key_info", EcKeyInfo()),
namedtype.NamedType("public_key", univ.BitString()),
)
class EdKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_type', univ.ObjectIdentifier()),
namedtype.NamedType("key_type", univ.ObjectIdentifier())
)
class EdPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_info', EdKeyInfo()),
namedtype.NamedType('public_key', univ.BitString())
namedtype.NamedType("key_info", EdKeyInfo()),
namedtype.NamedType("public_key", univ.BitString()),
)
@ -73,12 +74,12 @@ def parse_eddsa_signature(signature):
def parse_ecdh256_privkey(private_key):
if private_key < 0 or private_key.bit_length() > 256:
raise ParseError("Not a valid 256 bit ECDH private key")
return private_key.to_bytes(32, byteorder='big')
return private_key.to_bytes(32, byteorder="big")
def parse_signed_hex(string):
if len(string) % 2 == 1:
string = '0' + string
string = "0" + string
number = int(string, 16)
if int(string[0], 16) & 8:
return -number
@ -111,10 +112,10 @@ def parse_ed_pubkey(public_key):
except Exception:
raise ParseError("Not a BER encoded Edwards curve public key")
if not public_key['key_info']['key_type'] == univ.ObjectIdentifier('1.3.101.112'):
if not public_key["key_info"]["key_type"] == univ.ObjectIdentifier("1.3.101.112"):
raise ParseError("Not a BER encoded Edwards curve public key")
public_key = bytes(public_key['public_key'].asOctets())
public_key = bytes(public_key["public_key"].asOctets())
return public_key
@ -125,16 +126,20 @@ def parse_ec_pubkey(public_key):
except Exception:
raise ParseError("Not a BER encoded named elliptic curve public key")
if not public_key['key_info']['key_type'] == univ.ObjectIdentifier('1.2.840.10045.2.1'):
if not public_key["key_info"]["key_type"] == univ.ObjectIdentifier(
"1.2.840.10045.2.1"
):
raise ParseError("Not a BER encoded named elliptic curve public key")
curve_identifier = public_key['key_info']['curve_name']
curve_identifier = public_key["key_info"]["curve_name"]
curve_name = get_curve_name_by_identifier(curve_identifier)
if curve_name is None:
raise NotSupported('Unsupported named elliptic curve: {}'.format(curve_identifier))
raise NotSupported(
"Unsupported named elliptic curve: {}".format(curve_identifier)
)
try:
public_key = bytes(public_key['public_key'].asOctets())
public_key = bytes(public_key["public_key"].asOctets())
except:
raise ParseError("Not a BER encoded named elliptic curve public key")
@ -150,8 +155,8 @@ def parse_ecdsa256_signature(signature):
except:
raise ParseError("Not a valid DER encoded ECDSA signature")
try:
r = int(signature['r']).to_bytes(32, byteorder='big')
s = int(signature['s']).to_bytes(32, byteorder='big')
r = int(signature["r"]).to_bytes(32, byteorder="big")
s = int(signature["s"]).to_bytes(32, byteorder="big")
signature = r + s
except:
raise ParseError("Not a valid DER encoded 256 bit ECDSA signature")
@ -167,29 +172,29 @@ def parse_digest(name):
def get_curve_by_name(name):
lib.get_curve_by_name.restype = ctypes.c_void_p
curve = lib.get_curve_by_name(bytes(name, 'ascii'))
if curve == None:
curve = lib.get_curve_by_name(bytes(name, "ascii"))
if curve is None:
return None
curve = ctypes.cast(curve, ctypes.POINTER(curve_info))
return ctypes.c_void_p(curve.contents.params)
def parse_curve_name(name):
if name == 'secp256r1':
return 'nist256p1'
elif name == 'secp256k1':
return 'secp256k1'
elif name == 'curve25519':
return 'curve25519'
if name == "secp256r1":
return "nist256p1"
elif name == "secp256k1":
return "secp256k1"
elif name == "curve25519":
return "curve25519"
else:
return None
def get_curve_name_by_identifier(identifier):
if identifier == univ.ObjectIdentifier('1.3.132.0.10'):
return 'secp256k1'
elif identifier == univ.ObjectIdentifier('1.2.840.10045.3.1.7'):
return 'nist256p1'
if identifier == univ.ObjectIdentifier("1.3.132.0.10"):
return "secp256k1"
elif identifier == univ.ObjectIdentifier("1.2.840.10045.3.1.7"):
return "nist256p1"
else:
return None
@ -218,26 +223,29 @@ def chacha_poly_decrypt(key, iv, associated_data, ciphertext, tag):
def add_pkcs_padding(data):
padding_length = 16 - len(data) % 16
return data + bytes([padding_length]*padding_length)
return data + bytes([padding_length] * padding_length)
def remove_pkcs_padding(data):
padding_length = data[-1]
if not (0 < padding_length <= 16 and data[-padding_length:] == bytes([padding_length]*padding_length)):
if not (
0 < padding_length <= 16
and data[-padding_length:] == bytes([padding_length] * padding_length)
):
return False
else:
return data[:-padding_length]
def aes_encrypt_initialise(key, context):
if len(key) == (128/8):
if len(key) == (128 / 8):
lib.aes_encrypt_key128(key, context)
elif len(key) == (192/8):
elif len(key) == (192 / 8):
lib.aes_encrypt_key192(key, context)
elif len(key) == (256/8):
elif len(key) == (256 / 8):
lib.aes_encrypt_key256(key, context)
else:
raise NotSupported("Unsupported key length: {}".format(len(key)*8))
raise NotSupported("Unsupported key length: {}".format(len(key) * 8))
def aes_cbc_encrypt(key, iv, plaintext):
@ -245,19 +253,21 @@ def aes_cbc_encrypt(key, iv, plaintext):
context = bytes(context_structure_length)
ciphertext = bytes(len(plaintext))
aes_encrypt_initialise(key, context)
lib.aes_cbc_encrypt(plaintext, ciphertext, len(plaintext), bytes(bytearray(iv)), context)
lib.aes_cbc_encrypt(
plaintext, ciphertext, len(plaintext), bytes(bytearray(iv)), context
)
return ciphertext
def aes_decrypt_initialise(key, context):
if len(key) == (128/8):
if len(key) == (128 / 8):
lib.aes_decrypt_key128(key, context)
elif len(key) == (192/8):
elif len(key) == (192 / 8):
lib.aes_decrypt_key192(key, context)
elif len(key) == (256/8):
elif len(key) == (256 / 8):
lib.aes_decrypt_key256(key, context)
else:
raise NotSupported("Unsupported AES key length: {}".format(len(key)*8))
raise NotSupported("Unsupported AES key length: {}".format(len(key) * 8))
def aes_cbc_decrypt(key, iv, ciphertext):
@ -281,35 +291,43 @@ def generate_aes(filename):
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'AES-CBC-PKCS5':
if data["algorithm"] != "AES-CBC-PKCS5":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'key', 'iv', 'msg', 'ct', 'result'}):
for test in test_group["tests"]:
if not keys_in_dict(test, {"key", "iv", "msg", "ct", "result"}):
raise DataError()
try:
key = unhexlify(test['key'])
iv = unhexlify(test['iv'])
plaintext = unhexlify(test['msg'])
ciphertext = unhexlify(test['ct'])
result = parse_result(test['result'])
key = unhexlify(test["key"])
iv = unhexlify(test["iv"])
plaintext = unhexlify(test["msg"])
ciphertext = unhexlify(test["ct"])
result = parse_result(test["result"])
except:
raise DataError()
if len(key) not in [128/8, 192/8, 256/8]:
if len(key) not in [128 / 8, 192 / 8, 256 / 8]:
continue
if result is None:
continue
vectors.append((hexlify(key), hexlify(iv), hexlify(plaintext), hexlify(ciphertext), result))
vectors.append(
(
hexlify(key),
hexlify(iv),
hexlify(plaintext),
hexlify(ciphertext),
result,
)
)
return vectors
@ -318,34 +336,46 @@ def generate_chacha_poly(filename):
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'CHACHA20-POLY1305':
if data["algorithm"] != "CHACHA20-POLY1305":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'key', 'iv', 'aad', 'msg', 'ct', 'tag', 'result'}):
for test in test_group["tests"]:
if not keys_in_dict(
test, {"key", "iv", "aad", "msg", "ct", "tag", "result"}
):
raise DataError()
try:
key = unhexlify(test['key'])
iv = unhexlify(test['iv'])
associated_data = unhexlify(test['aad'])
plaintext = unhexlify(test['msg'])
ciphertext = unhexlify(test['ct'])
tag = unhexlify(test['tag'])
result = parse_result(test['result'])
key = unhexlify(test["key"])
iv = unhexlify(test["iv"])
associated_data = unhexlify(test["aad"])
plaintext = unhexlify(test["msg"])
ciphertext = unhexlify(test["ct"])
tag = unhexlify(test["tag"])
result = parse_result(test["result"])
except:
raise DataError()
if result is None:
continue
vectors.append((hexlify(key), hexlify(iv), hexlify(associated_data), hexlify(plaintext), hexlify(ciphertext), hexlify(tag), result))
vectors.append(
(
hexlify(key),
hexlify(iv),
hexlify(associated_data),
hexlify(plaintext),
hexlify(ciphertext),
hexlify(tag),
result,
)
)
return vectors
@ -354,63 +384,70 @@ def generate_curve25519_dh(filename):
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'X25519':
if data["algorithm"] != "X25519":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'public', 'private', 'shared', 'result', 'curve'}):
for test in test_group["tests"]:
if not keys_in_dict(
test, {"public", "private", "shared", "result", "curve"}
):
raise DataError()
try:
public_key = unhexlify(test['public'])
curve_name = parse_curve_name(test['curve'])
private_key = unhexlify(test['private'])
shared = unhexlify(test['shared'])
result = parse_result(test['result'])
public_key = unhexlify(test["public"])
curve_name = parse_curve_name(test["curve"])
private_key = unhexlify(test["private"])
shared = unhexlify(test["shared"])
result = parse_result(test["result"])
except:
raise DataError()
if curve_name != 'curve25519':
if curve_name != "curve25519":
continue
if result is None:
continue
vectors.append((hexlify(public_key), hexlify(private_key), hexlify(shared), result))
vectors.append(
(hexlify(public_key), hexlify(private_key), hexlify(shared), result)
)
return vectors
def generate_ecdh(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'ECDH':
if data["algorithm"] != "ECDH":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests"}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'public', 'private', 'shared', 'result', 'curve'}):
for test in test_group["tests"]:
if not keys_in_dict(
test, {"public", "private", "shared", "result", "curve"}
):
raise DataError()
try:
public_key = unhexlify(test['public'])
curve_name = parse_curve_name(test['curve'])
private_key = parse_signed_hex(test['private'])
shared = unhexlify(test['shared'])
result = parse_result(test['result'])
public_key = unhexlify(test["public"])
curve_name = parse_curve_name(test["curve"])
private_key = parse_signed_hex(test["private"])
shared = unhexlify(test["shared"])
result = parse_result(test["result"])
except:
raise DataError()
@ -431,7 +468,15 @@ def generate_ecdh(filename):
if result is None:
continue
vectors.append((curve_name, hexlify(public_key), hexlify(private_key), hexlify(shared), result))
vectors.append(
(
curve_name,
hexlify(public_key),
hexlify(private_key),
hexlify(shared),
result,
)
)
return vectors
@ -441,18 +486,18 @@ def generate_ecdsa(filename):
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'ECDSA':
if data["algorithm"] != "ECDSA":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests', 'keyDer', 'sha'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests", "keyDer", "sha"}):
raise DataError()
try:
public_key = unhexlify(test_group['keyDer'])
public_key = unhexlify(test_group["keyDer"])
except:
raise DataError()
@ -464,18 +509,18 @@ def generate_ecdsa(filename):
continue
try:
hasher = parse_digest(test_group['sha'])
hasher = parse_digest(test_group["sha"])
except NotSupported:
continue
for test in test_group['tests']:
if not keys_in_dict(test, {'sig', 'msg', 'result'}):
for test in test_group["tests"]:
if not keys_in_dict(test, {"sig", "msg", "result"}):
raise DataError()
try:
signature = unhexlify(test['sig'])
message = unhexlify(test['msg'])
result = parse_result(test['result'])
signature = unhexlify(test["sig"])
message = unhexlify(test["msg"])
result = parse_result(test["result"])
except:
raise DataError()
@ -487,7 +532,16 @@ def generate_ecdsa(filename):
except ParseError:
continue
vectors.append((curve_name, hexlify(public_key), hasher, hexlify(message), hexlify(signature), result))
vectors.append(
(
curve_name,
hexlify(public_key),
hasher,
hexlify(message),
hexlify(signature),
result,
)
)
return vectors
@ -497,19 +551,18 @@ def generate_eddsa(filename):
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
if not keys_in_dict(data, {"algorithm", "testGroups"}):
raise DataError()
if data['algorithm'] != 'EDDSA':
if data["algorithm"] != "EDDSA":
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests', 'keyDer'}):
for test_group in data["testGroups"]:
if not keys_in_dict(test_group, {"tests", "keyDer"}):
raise DataError()
try:
public_key = unhexlify(test_group['keyDer'])
public_key = unhexlify(test_group["keyDer"])
except:
raise DataError()
@ -518,14 +571,14 @@ def generate_eddsa(filename):
except ParseError:
continue
for test in test_group['tests']:
if not keys_in_dict(test, {'sig', 'msg', 'result'}):
for test in test_group["tests"]:
if not keys_in_dict(test, {"sig", "msg", "result"}):
raise DataError()
try:
signature = unhexlify(test['sig'])
message = unhexlify(test['msg'])
result = parse_result(test['result'])
signature = unhexlify(test["sig"])
message = unhexlify(test["msg"])
result = parse_result(test["result"])
except:
raise DataError()
@ -537,21 +590,31 @@ def generate_eddsa(filename):
except ParseError:
continue
vectors.append((hexlify(public_key), hexlify(message), hexlify(signature), result))
vectors.append(
(hexlify(public_key), hexlify(message), hexlify(signature), result)
)
return vectors
dir = os.path.abspath(os.path.dirname(__file__))
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, 'libtrezor-crypto.so'))
testvectors_directory = os.path.join(dir, 'wycheproof/testvectors')
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, "libtrezor-crypto.so"))
testvectors_directory = os.path.join(dir, "wycheproof/testvectors")
context_structure_length = 1024
ecdh_vectors = generate_ecdh("ecdh_test.json")
curve25519_dh_vectors = generate_curve25519_dh("x25519_test.json")
eddsa_vectors = generate_eddsa("eddsa_test.json")
ecdsa_vectors = generate_ecdsa("ecdsa_test.json") + generate_ecdsa("ecdsa_secp256k1_sha256_test.json") + generate_ecdsa("ecdsa_secp256r1_sha256_test.json")
ecdh_vectors = generate_ecdh("ecdh_test.json") + generate_ecdh("ecdh_secp256k1_test.json") + generate_ecdh("ecdh_secp256r1_test.json")
ecdsa_vectors = (
generate_ecdsa("ecdsa_test.json")
+ generate_ecdsa("ecdsa_secp256k1_sha256_test.json")
+ generate_ecdsa("ecdsa_secp256r1_sha256_test.json")
)
ecdh_vectors = (
generate_ecdh("ecdh_test.json")
+ generate_ecdh("ecdh_secp256k1_test.json")
+ generate_ecdh("ecdh_secp256r1_test.json")
)
chacha_poly_vectors = generate_chacha_poly("chacha20_poly1305_test.json")
aes_vectors = generate_aes("aes_cbc_pkcs5_test.json")
@ -562,37 +625,48 @@ def test_eddsa(public_key, message, signature, result):
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = lib.ed25519_sign_open(message, len(message), public_key, signature) == 0
computed_result = (
lib.ed25519_sign_open(message, len(message), public_key, signature) == 0
)
assert result == computed_result
@pytest.mark.parametrize("curve_name, public_key, hasher, message, signature, result", ecdsa_vectors)
@pytest.mark.parametrize(
"curve_name, public_key, hasher, message, signature, result", ecdsa_vectors
)
def test_ecdsa(curve_name, public_key, hasher, message, signature, result):
curve = get_curve_by_name(curve_name)
if curve is None:
raise NotSupported("Curve not supported: {}".format(curve_Name))
raise NotSupported("Curve not supported: {}".format(curve_name))
public_key = unhexlify(public_key)
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = lib.ecdsa_verify(curve, hasher, public_key, signature, message, len(message)) == 0
computed_result = (
lib.ecdsa_verify(curve, hasher, public_key, signature, message, len(message))
== 0
)
assert result == computed_result
@pytest.mark.parametrize("public_key, private_key, shared, result", curve25519_dh_vectors)
@pytest.mark.parametrize(
"public_key, private_key, shared, result", curve25519_dh_vectors
)
def test_curve25519_dh(public_key, private_key, shared, result):
public_key = unhexlify(public_key)
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0]*32)
computed_shared = bytes([0] * 32)
lib.curve25519_scalarmult(computed_shared, private_key, public_key)
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize("curve_name, public_key, private_key, shared, result", ecdh_vectors)
@pytest.mark.parametrize(
"curve_name, public_key, private_key, shared, result", ecdh_vectors
)
def test_ecdh(curve_name, public_key, private_key, shared, result):
curve = get_curve_by_name(curve_name)
if curve is None:
@ -602,14 +676,16 @@ def test_ecdh(curve_name, public_key, private_key, shared, result):
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0]*2*32)
computed_shared = bytes([0] * 2 * 32)
lib.ecdh_multiply(curve, private_key, public_key, computed_shared)
computed_shared = computed_shared[1:33]
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize("key, iv, associated_data, plaintext, ciphertext, tag, result", chacha_poly_vectors)
@pytest.mark.parametrize(
"key, iv, associated_data, plaintext, ciphertext, tag, result", chacha_poly_vectors
)
def test_chacha_poly(key, iv, associated_data, plaintext, ciphertext, tag, result):
key = unhexlify(key)
iv = unhexlify(iv)
@ -618,7 +694,9 @@ def test_chacha_poly(key, iv, associated_data, plaintext, ciphertext, tag, resul
ciphertext = unhexlify(ciphertext)
tag = unhexlify(tag)
computed_ciphertext, computed_tag = chacha_poly_encrypt(key, iv, associated_data, plaintext)
computed_ciphertext, computed_tag = chacha_poly_encrypt(
key, iv, associated_data, plaintext
)
computed_result = ciphertext == computed_ciphertext and tag == computed_tag
assert result == computed_result