1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-26 23:32:03 +00:00

integrate Wycheproof tests

This commit is contained in:
Ondřej Vejpustek 2018-07-16 12:53:55 +02:00 committed by Pavol Rusnak
parent 8318ac35fc
commit 02a988cd26
6 changed files with 650 additions and 2 deletions

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "tests/wycheproof"]
path = tests/wycheproof
url = https://github.com/google/wycheproof

View File

@ -19,7 +19,7 @@ env:
- PYTHON=python3
install:
- $PYTHON -m pip install --user pytest ecdsa curve25519-donna
- $PYTHON -m pip install --user pytest ecdsa curve25519-donna pyasn1
script:
- make

View File

@ -86,7 +86,7 @@ tests/test_openssl: tests/test_openssl.o $(OBJS)
$(CC) tests/test_openssl.o $(OBJS) $(TESTSSLLIBS) -o tests/test_openssl
tests/libtrezor-crypto.so: $(SRCS)
$(CC) $(CFLAGS) -fPIC -shared $(SRCS) -o tests/libtrezor-crypto.so
$(CC) $(CFLAGS) -DAES_VAR -fPIC -shared $(SRCS) -o tests/libtrezor-crypto.so
tools: tools/xpubaddrgen tools/mktable tools/bip39bruteforce

View File

@ -26,6 +26,7 @@ These include:
- Chacha20-Poly1305
- unit tests (using Check - check.sf.net; in test_check.c)
- tests against OpenSSL (in test_openssl.c)
- integrated Wycheproof tests
Distibuted under MIT License.

643
tests/test_wycheproof.py Executable file
View File

@ -0,0 +1,643 @@
#!/usr/bin/python
import os
from pyasn1.codec.der.decoder import decode as der_decode
from pyasn1.codec.der.encoder import encode as der_encode
from pyasn1.codec.ber.decoder import decode as ber_decode
from pyasn1.type import univ, namedtype
from binascii import unhexlify, hexlify
import json
import ctypes
import pytest
class EcSignature(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('r', univ.Integer()),
namedtype.NamedType('s', univ.Integer())
)
class EcKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_type', univ.ObjectIdentifier()),
namedtype.NamedType('curve_name', univ.ObjectIdentifier())
)
class EcPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_info', EcKeyInfo()),
namedtype.NamedType('public_key', univ.BitString())
)
class EdKeyInfo(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_type', univ.ObjectIdentifier()),
)
class EdPublicKey(univ.Sequence):
componentType = namedtype.NamedTypes(
namedtype.NamedType('key_info', EdKeyInfo()),
namedtype.NamedType('public_key', univ.BitString())
)
class ParseError(Exception):
pass
class NotSupported(Exception):
pass
class DataError(Exception):
pass
class curve_info(ctypes.Structure):
_fields_ = [("bip32_name", ctypes.c_char_p), ("params", ctypes.c_void_p)]
def keys_in_dict(dictionary, keys):
return keys <= set(dictionary.keys())
def parse_eddsa_signature(signature):
if len(signature) != 64:
raise ParseError("Not a valid EdDSA signature")
return signature
def parse_ecdh256_privkey(private_key):
if private_key < 0 or private_key.bit_length() > 256:
raise ParseError("Not a valid 256 bit ECDH private key")
return private_key.to_bytes(32, byteorder='big')
def parse_signed_hex(string):
if len(string) % 2 == 1:
string = '0' + string
number = int(string, 16)
if int(string[0], 16) & 8:
return -number
else:
return number
def parse_result(result):
if result == "valid":
return True
elif result == "invalid":
return False
elif result == "acceptable":
return None
else:
raise DataError()
def is_valid_der(data):
try:
structure, _ = der_decode(data)
return data == der_encode(structure)
except:
return False
def parse_ed_pubkey(public_key):
try:
public_key, _ = ber_decode(public_key, asn1Spec=EdPublicKey())
except Exception:
raise ParseError("Not a BER encoded Edwards curve public key")
if not public_key['key_info']['key_type'] == univ.ObjectIdentifier('1.3.101.112'):
raise ParseError("Not a BER encoded Edwards curve public key")
public_key = bytes(public_key['public_key'].asOctets())
return public_key
def parse_ec_pubkey(public_key):
try:
public_key, _ = ber_decode(public_key, asn1Spec=EcPublicKey())
except Exception:
raise ParseError("Not a BER encoded named elliptic curve public key")
if not public_key['key_info']['key_type'] == univ.ObjectIdentifier('1.2.840.10045.2.1'):
raise ParseError("Not a BER encoded named elliptic curve public key")
curve_identifier = public_key['key_info']['curve_name']
curve_name = get_curve_name_by_identifier(curve_identifier)
if curve_name is None:
raise NotSupported('Unsupported named elliptic curve: {}'.format(curve_identifier))
try:
public_key = bytes(public_key['public_key'].asOctets())
except:
raise ParseError("Not a BER encoded named elliptic curve public key")
return curve_name, public_key
def parse_ecdsa256_signature(signature):
s = signature
if not is_valid_der(signature):
raise ParseError("Not a valid DER")
try:
signature, _ = der_decode(signature, asn1Spec=EcSignature())
except:
raise ParseError("Not a valid DER encoded ECDSA signature")
try:
r = int(signature['r']).to_bytes(32, byteorder='big')
s = int(signature['s']).to_bytes(32, byteorder='big')
signature = r + s
except:
raise ParseError("Not a valid DER encoded 256 bit ECDSA signature")
return signature
def parse_digest(name):
if name == "SHA-256":
return 0
else:
raise NotSupported("Unsupported hash function: {}".format(name))
def get_curve_by_name(name):
lib.get_curve_by_name.restype = ctypes.c_void_p
curve = lib.get_curve_by_name(bytes(name, 'ascii'))
if curve == None:
return None
curve = ctypes.cast(curve, ctypes.POINTER(curve_info))
return ctypes.c_void_p(curve.contents.params)
def parse_curve_name(name):
if name == 'secp256r1':
return 'nist256p1'
elif name == 'secp256k1':
return 'secp256k1'
elif name == 'curve25519':
return 'curve25519'
else:
return None
def get_curve_name_by_identifier(identifier):
if identifier == univ.ObjectIdentifier('1.3.132.0.10'):
return 'secp256k1'
elif identifier == univ.ObjectIdentifier('1.2.840.10045.3.1.7'):
return 'nist256p1'
else:
return None
def chacha_poly_encrypt(key, iv, associated_data, plaintext):
context = bytes(context_structure_length)
tag = bytes(16)
ciphertext = bytes(len(plaintext))
lib.rfc7539_init(context, key, iv)
lib.rfc7539_auth(context, associated_data, len(associated_data))
lib.chacha20poly1305_encrypt(context, plaintext, ciphertext, len(plaintext))
lib.rfc7539_finish(context, len(associated_data), len(plaintext), tag)
return ciphertext, tag
def chacha_poly_decrypt(key, iv, associated_data, ciphertext, tag):
context = bytes(context_structure_length)
computed_tag = bytes(16)
plaintext = bytes(len(ciphertext))
lib.rfc7539_init(context, key, iv)
lib.rfc7539_auth(context, associated_data, len(associated_data))
lib.chacha20poly1305_decrypt(context, ciphertext, plaintext, len(ciphertext))
lib.rfc7539_finish(context, len(associated_data), len(ciphertext), computed_tag)
return plaintext if tag == computed_tag else False
def add_pkcs_padding(data):
padding_length = 16 - len(data) % 16
return data + bytes([padding_length]*padding_length)
def remove_pkcs_padding(data):
padding_length = data[-1]
if not (0 < padding_length <= 16 and data[-padding_length:] == bytes([padding_length]*padding_length)):
return False
else:
return data[:-padding_length]
def aes_encrypt_initialise(key, context):
if len(key) == (128/8):
lib.aes_encrypt_key128(key, context)
elif len(key) == (192/8):
lib.aes_encrypt_key192(key, context)
elif len(key) == (256/8):
lib.aes_encrypt_key256(key, context)
else:
raise NotSupported("Unsupported key length: {}".format(len(key)*8))
def aes_cbc_encrypt(key, iv, plaintext):
plaintext = add_pkcs_padding(plaintext)
context = bytes(context_structure_length)
ciphertext = bytes(len(plaintext))
aes_encrypt_initialise(key, context)
lib.aes_cbc_encrypt(plaintext, ciphertext, len(plaintext), bytes(bytearray(iv)), context)
return ciphertext
def aes_decrypt_initialise(key, context):
if len(key) == (128/8):
lib.aes_decrypt_key128(key, context)
elif len(key) == (192/8):
lib.aes_decrypt_key192(key, context)
elif len(key) == (256/8):
lib.aes_decrypt_key256(key, context)
else:
raise NotSupported("Unsupported AES key length: {}".format(len(key)*8))
def aes_cbc_decrypt(key, iv, ciphertext):
context = bytes(context_structure_length)
plaintext = bytes(len(ciphertext))
aes_decrypt_initialise(key, context)
lib.aes_cbc_decrypt(ciphertext, plaintext, len(ciphertext), iv, context)
return remove_pkcs_padding(plaintext)
def load_json_testvectors(filename):
try:
result = json.loads(open(os.path.join(testvectors_directory, filename)).read())
except:
raise DataError()
return result
def generate_aes(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'AES-CBC-PKCS5':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'key', 'iv', 'msg', 'ct', 'result'}):
raise DataError()
try:
key = unhexlify(test['key'])
iv = unhexlify(test['iv'])
plaintext = unhexlify(test['msg'])
ciphertext = unhexlify(test['ct'])
result = parse_result(test['result'])
except:
raise DataError()
if len(key) not in [128/8, 192/8, 256/8]:
continue
if result is None:
continue
vectors.append((hexlify(key), hexlify(iv), hexlify(plaintext), hexlify(ciphertext), result))
return vectors
def generate_chacha_poly(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'CHACHA20-POLY1305':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'key', 'iv', 'aad', 'msg', 'ct', 'tag', 'result'}):
raise DataError()
try:
key = unhexlify(test['key'])
iv = unhexlify(test['iv'])
associated_data = unhexlify(test['aad'])
plaintext = unhexlify(test['msg'])
ciphertext = unhexlify(test['ct'])
tag = unhexlify(test['tag'])
result = parse_result(test['result'])
except:
raise DataError()
if result is None:
continue
vectors.append((hexlify(key), hexlify(iv), hexlify(associated_data), hexlify(plaintext), hexlify(ciphertext), hexlify(tag), result))
return vectors
def generate_curve25519_dh(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'X25519':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'public', 'private', 'shared', 'result', 'curve'}):
raise DataError()
try:
public_key = unhexlify(test['public'])
curve_name = parse_curve_name(test['curve'])
private_key = unhexlify(test['private'])
shared = unhexlify(test['shared'])
result = parse_result(test['result'])
except:
raise DataError()
if curve_name != 'curve25519':
continue
if result is None:
continue
vectors.append((hexlify(public_key), hexlify(private_key), hexlify(shared), result))
return vectors
def generate_ecdh(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'ECDH':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests'}):
raise DataError()
for test in test_group['tests']:
if not keys_in_dict(test, {'public', 'private', 'shared', 'result', 'curve'}):
raise DataError()
try:
public_key = unhexlify(test['public'])
curve_name = parse_curve_name(test['curve'])
private_key = parse_signed_hex(test['private'])
shared = unhexlify(test['shared'])
result = parse_result(test['result'])
except:
raise DataError()
try:
private_key = parse_ecdh256_privkey(private_key)
except ParseError:
continue
try:
key_curve_name, public_key = parse_ec_pubkey(public_key)
except NotSupported:
continue
except ParseError:
continue
if key_curve_name != curve_name:
continue
if result is None:
continue
vectors.append((curve_name, hexlify(public_key), hexlify(private_key), hexlify(shared), result))
return vectors
def generate_ecdsa(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'ECDSA':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests', 'keyDer', 'sha'}):
raise DataError()
try:
public_key = unhexlify(test_group['keyDer'])
except:
raise DataError()
try:
curve_name, public_key = parse_ec_pubkey(public_key)
except NotSupported:
continue
except ParseError:
continue
try:
hasher = parse_digest(test_group['sha'])
except NotSupported:
continue
for test in test_group['tests']:
if not keys_in_dict(test, {'sig', 'msg', 'result'}):
raise DataError()
try:
signature = unhexlify(test['sig'])
message = unhexlify(test['msg'])
result = parse_result(test['result'])
except:
raise DataError()
if result is None:
continue
try:
signature = parse_ecdsa256_signature(signature)
except ParseError:
continue
vectors.append((curve_name, hexlify(public_key), hasher, hexlify(message), hexlify(signature), result))
return vectors
def generate_eddsa(filename):
vectors = []
data = load_json_testvectors(filename)
if not keys_in_dict(data, {'algorithm', 'testGroups'}):
raise DataError()
if data['algorithm'] != 'EDDSA':
raise DataError()
for test_group in data['testGroups']:
if not keys_in_dict(test_group, {'tests', 'keyDer'}):
raise DataError()
try:
public_key = unhexlify(test_group['keyDer'])
except:
raise DataError()
try:
public_key = parse_ed_pubkey(public_key)
except ParseError:
continue
for test in test_group['tests']:
if not keys_in_dict(test, {'sig', 'msg', 'result'}):
raise DataError()
try:
signature = unhexlify(test['sig'])
message = unhexlify(test['msg'])
result = parse_result(test['result'])
except:
raise DataError()
if result is None:
continue
try:
signature = parse_eddsa_signature(signature)
except ParseError:
continue
vectors.append((hexlify(public_key), hexlify(message), hexlify(signature), result))
return vectors
dir = os.path.abspath(os.path.dirname(__file__))
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, 'libtrezor-crypto.so'))
testvectors_directory = os.path.join(dir, 'wycheproof/testvectors')
context_structure_length = 1024
ecdh_vectors = generate_ecdh("ecdh_test.json")
curve25519_dh_vectors = generate_curve25519_dh("x25519_test.json")
eddsa_vectors = generate_eddsa("eddsa_test.json")
ecdsa_vectors = generate_ecdsa("ecdsa_test.json") + generate_ecdsa("ecdsa_secp256k1_sha256_test.json") + generate_ecdsa("ecdsa_secp256r1_sha256_test.json")
ecdh_vectors = generate_ecdh("ecdh_test.json") + generate_ecdh("ecdh_secp256k1_test.json") + generate_ecdh("ecdh_secp256r1_test.json")
chacha_poly_vectors = generate_chacha_poly("chacha20_poly1305_test.json")
aes_vectors = generate_aes("aes_cbc_pkcs5_test.json")
@pytest.mark.parametrize("public_key, message, signature, result", eddsa_vectors)
def test_eddsa(public_key, message, signature, result):
public_key = unhexlify(public_key)
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = lib.ed25519_sign_open(message, len(message), public_key, signature) == 0
assert result == computed_result
@pytest.mark.parametrize("curve_name, public_key, hasher, message, signature, result", ecdsa_vectors)
def test_ecdsa(curve_name, public_key, hasher, message, signature, result):
curve = get_curve_by_name(curve_name)
if curve is None:
raise NotSupported("Curve not supported: {}".format(curve_Name))
public_key = unhexlify(public_key)
signature = unhexlify(signature)
message = unhexlify(message)
computed_result = lib.ecdsa_verify(curve, hasher, public_key, signature, message, len(message)) == 0
assert result == computed_result
@pytest.mark.parametrize("public_key, private_key, shared, result", curve25519_dh_vectors)
def test_curve25519_dh(public_key, private_key, shared, result):
public_key = unhexlify(public_key)
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0]*32)
lib.curve25519_scalarmult(computed_shared, private_key, public_key)
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize("curve_name, public_key, private_key, shared, result", ecdh_vectors)
def test_ecdh(curve_name, public_key, private_key, shared, result):
curve = get_curve_by_name(curve_name)
if curve is None:
raise NotSupported("Curve not supported: {}".format(curve_name))
public_key = unhexlify(public_key)
private_key = unhexlify(private_key)
shared = unhexlify(shared)
computed_shared = bytes([0]*2*32)
lib.ecdh_multiply(curve, private_key, public_key, computed_shared)
computed_shared = computed_shared[1:33]
computed_result = shared == computed_shared
assert result == computed_result
@pytest.mark.parametrize("key, iv, associated_data, plaintext, ciphertext, tag, result", chacha_poly_vectors)
def test_chacha_poly(key, iv, associated_data, plaintext, ciphertext, tag, result):
key = unhexlify(key)
iv = unhexlify(iv)
associated_data = unhexlify(associated_data)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
tag = unhexlify(tag)
computed_ciphertext, computed_tag = chacha_poly_encrypt(key, iv, associated_data, plaintext)
computed_result = ciphertext == computed_ciphertext and tag == computed_tag
assert result == computed_result
computed_plaintext = chacha_poly_decrypt(key, iv, associated_data, ciphertext, tag)
computed_result = plaintext == computed_plaintext
assert result == computed_result
@pytest.mark.parametrize("key, iv, plaintext, ciphertext, result", aes_vectors)
def test_aes(key, iv, plaintext, ciphertext, result):
key = unhexlify(key)
iv = unhexlify(iv)
plaintext = unhexlify(plaintext)
ciphertext = unhexlify(ciphertext)
computed_ciphertext = aes_cbc_encrypt(key, iv, plaintext)
computed_result = ciphertext == computed_ciphertext
assert result == computed_result
computed_plaintext = aes_cbc_decrypt(key, bytes(iv), ciphertext)
computed_result = plaintext == computed_plaintext
assert result == computed_result

1
tests/wycheproof Submodule

@ -0,0 +1 @@
Subproject commit 2904be69e9d666bf3064fdc15093747e695cfae6