1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-01 11:01:00 +00:00
trezor-firmware/embed/extmod/modtrezorui/display-stm32_1.h

250 lines
8.3 KiB
C
Raw Normal View History

/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include STM32_HAL_H
#define OLED_BUFSIZE (DISPLAY_RESX * DISPLAY_RESY / 8)
#define OLED_OFFSET(x, y) (OLED_BUFSIZE - 1 - (x) - ((y)/8) * DISPLAY_RESX)
#define OLED_MASK(x, y) (1 << (7 - (y) % 8))
#define OLED_SETCONTRAST 0x81
#define OLED_DISPLAYALLON_RESUME 0xA4
#define OLED_DISPLAYALLON 0xA5
#define OLED_NORMALDISPLAY 0xA6
#define OLED_INVERTDISPLAY 0xA7
#define OLED_DISPLAYOFF 0xAE
#define OLED_DISPLAYON 0xAF
#define OLED_SETDISPLAYOFFSET 0xD3
#define OLED_SETCOMPINS 0xDA
#define OLED_SETVCOMDETECT 0xDB
#define OLED_SETDISPLAYCLOCKDIV 0xD5
#define OLED_SETPRECHARGE 0xD9
#define OLED_SETMULTIPLEX 0xA8
#define OLED_SETLOWCOLUMN 0x00
#define OLED_SETHIGHCOLUMN 0x10
#define OLED_SETSTARTLINE 0x40
#define OLED_MEMORYMODE 0x20
#define OLED_COMSCANINC 0xC0
#define OLED_COMSCANDEC 0xC8
#define OLED_SEGREMAP 0xA0
#define OLED_CHARGEPUMP 0x8D
#define OLED_DC_PORT GPIOB
#define OLED_DC_PIN GPIO_PIN_0 // PB0 | Data/Command
#define OLED_CS_PORT GPIOA
#define OLED_CS_PIN GPIO_PIN_4 // PA4 | SPI Select
#define OLED_RST_PORT GPIOB
#define OLED_RST_PIN GPIO_PIN_1 // PB1 | Reset display
static uint8_t OLED_BUFFER[OLED_BUFSIZE];
static struct {
struct {
uint16_t x, y;
} start;
struct {
uint16_t x, y;
} end;
struct {
uint16_t x, y;
} pos;
} PIXELWINDOW;
void PIXELDATA(uint16_t c) {
if (PIXELWINDOW.pos.x <= PIXELWINDOW.end.x && PIXELWINDOW.pos.y <= PIXELWINDOW.end.y) {
// set to white if highest bits of all R, G, B values are set to 1
// bin(10000 100000 10000) = hex(0x8410)
// otherwise set to black
if (c & 0x8410) {
OLED_BUFFER[OLED_OFFSET(PIXELWINDOW.pos.x, PIXELWINDOW.pos.y)] |= OLED_MASK(PIXELWINDOW.pos.x, PIXELWINDOW.pos.y);
} else {
OLED_BUFFER[OLED_OFFSET(PIXELWINDOW.pos.x, PIXELWINDOW.pos.y)] &= ~OLED_MASK(PIXELWINDOW.pos.x, PIXELWINDOW.pos.y);
}
}
PIXELWINDOW.pos.x++;
if (PIXELWINDOW.pos.x > PIXELWINDOW.end.x) {
PIXELWINDOW.pos.x = PIXELWINDOW.start.x;
PIXELWINDOW.pos.y++;
}
}
static void display_set_window(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1)
{
PIXELWINDOW.start.x = x0; PIXELWINDOW.start.y = y0;
PIXELWINDOW.end.x = x1; PIXELWINDOW.end.y = y1;
PIXELWINDOW.pos.x = x0; PIXELWINDOW.pos.y = y0;
}
static void display_set_orientation(int degrees)
{
display_refresh();
}
static void display_set_backlight(int val)
{
}
SPI_HandleTypeDef spi_handle;
static inline void spi_send(const uint8_t *data, int len)
{
HAL_Delay(1);
if (HAL_OK != HAL_SPI_Transmit(&spi_handle, (uint8_t *)data, len, 1000)) {
// TODO: error
return;
}
while (HAL_SPI_STATE_READY != HAL_SPI_GetState(&spi_handle)) {
}
}
void display_init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_SPI1_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStructure;
// set GPIO for OLED display
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStructure.Alternate = 0;
GPIO_InitStructure.Pin = GPIO_PIN_4;
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET);
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.Pin = GPIO_PIN_0 | GPIO_PIN_4;
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0 | GPIO_PIN_4, GPIO_PIN_RESET);
HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
// enable SPI 1 for OLED display
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStructure.Alternate = GPIO_AF5_SPI1;
GPIO_InitStructure.Pin = GPIO_PIN_5 | GPIO_PIN_7;
HAL_GPIO_Init(GPIOA, &GPIO_InitStructure);
spi_handle.Instance = SPI1;
spi_handle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
spi_handle.Init.Direction = SPI_DIRECTION_2LINES;
spi_handle.Init.CLKPhase = SPI_PHASE_1EDGE;
spi_handle.Init.CLKPolarity = SPI_POLARITY_LOW;
spi_handle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle.Init.CRCPolynomial = 7;
spi_handle.Init.DataSize = SPI_DATASIZE_8BIT;
spi_handle.Init.FirstBit = SPI_FIRSTBIT_MSB;
spi_handle.Init.NSS = SPI_NSS_HARD_OUTPUT;
spi_handle.Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle.Init.Mode = SPI_MODE_MASTER;
if (HAL_OK != HAL_SPI_Init(&spi_handle)) {
// TODO: error
return;
}
// initialize display
static const uint8_t s[25] = {
OLED_DISPLAYOFF,
OLED_SETDISPLAYCLOCKDIV,
0x80,
OLED_SETMULTIPLEX,
0x3F, // 128x64
OLED_SETDISPLAYOFFSET,
0x00,
OLED_SETSTARTLINE | 0x00,
OLED_CHARGEPUMP,
0x14,
OLED_MEMORYMODE,
0x00,
OLED_SEGREMAP | 0x01,
OLED_COMSCANDEC,
OLED_SETCOMPINS,
0x12, // 128x64
OLED_SETCONTRAST,
0xCF,
OLED_SETPRECHARGE,
0xF1,
OLED_SETVCOMDETECT,
0x40,
OLED_DISPLAYALLON_RESUME,
OLED_NORMALDISPLAY,
OLED_DISPLAYON
};
HAL_GPIO_WritePin(OLED_DC_PORT, OLED_DC_PIN, GPIO_PIN_RESET); // set to CMD
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_SET); // SPI deselect
// Reset the LCD
HAL_GPIO_WritePin(OLED_RST_PORT, OLED_RST_PIN, GPIO_PIN_SET);
HAL_Delay(40);
HAL_GPIO_WritePin(OLED_RST_PORT, OLED_RST_PIN, GPIO_PIN_RESET);
HAL_Delay(400);
HAL_GPIO_WritePin(OLED_RST_PORT, OLED_RST_PIN, GPIO_PIN_SET);
// init
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_RESET); // SPI select
spi_send(s, 25);
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_SET); // SPI deselect
display_clear();
display_refresh();
}
static inline uint8_t reverse_byte(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
static void rotate_oled_buffer(void)
{
for (int i = 0; i < OLED_BUFSIZE / 2; i++) {
uint8_t b = OLED_BUFFER[i];
OLED_BUFFER[i] = reverse_byte(OLED_BUFFER[OLED_BUFSIZE - i]);
OLED_BUFFER[OLED_BUFSIZE - i] = reverse_byte(b);
}
}
void display_refresh(void)
{
static const uint8_t s[3] = {OLED_SETLOWCOLUMN | 0x00, OLED_SETHIGHCOLUMN | 0x00, OLED_SETSTARTLINE | 0x00};
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_RESET); // SPI select
spi_send(s, 3);
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_SET); // SPI deselect
HAL_GPIO_WritePin(OLED_DC_PORT, OLED_DC_PIN, GPIO_PIN_SET); // set to DATA
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_RESET); // SPI select
if (DISPLAY_ORIENTATION == 180) { // rotate buffer if needed
rotate_oled_buffer();
}
spi_send(OLED_BUFFER, OLED_BUFSIZE);
if (DISPLAY_ORIENTATION == 180) { // rotate buffer back to original position
rotate_oled_buffer();
}
HAL_GPIO_WritePin(OLED_CS_PORT, OLED_CS_PIN, GPIO_PIN_SET); // SPI deselect
HAL_GPIO_WritePin(OLED_DC_PORT, OLED_DC_PIN, GPIO_PIN_RESET); // set to CMD
}
void display_save(const char *prefix)
{
}