You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
trezor-firmware/core/src/trezor/loop.py

304 lines
8.6 KiB

6 years ago
"""
Implements an event loop with cooperative multitasking and async I/O. Tasks in
the form of python coroutines (either plain generators or `async` functions) are
stepped through until completion, and can get asynchronously blocked by
`yield`ing or `await`ing a syscall.
See `schedule`, `run`, and syscalls `sleep`, `wait`, `signal` and `spawn`.
6 years ago
"""
import utime
import utimeq
from micropython import const
6 years ago
from trezor import io, log
after_step_hook = None # function, called after each task step
_QUEUE_SIZE = const(64) # maximum number of scheduled tasks
_queue = utimeq.utimeq(_QUEUE_SIZE)
_paused = {}
_finalizers = {}
if __debug__:
# for performance stats
import array
6 years ago
log_delay_pos = 0
log_delay_rb_len = const(10)
6 years ago
log_delay_rb = array.array("i", [0] * log_delay_rb_len)
def schedule(task, value=None, deadline=None, finalizer=None):
6 years ago
"""
Schedule task to be executed with `value` on given `deadline` (in
microseconds). Does not start the event loop itself, see `run`.
6 years ago
"""
if deadline is None:
deadline = utime.ticks_us()
if finalizer is not None:
_finalizers[id(task)] = finalizer
_queue.push(deadline, task, value)
def pause(task, iface):
tasks = _paused.get(iface, None)
if tasks is None:
tasks = _paused[iface] = set()
tasks.add(task)
def finalize(task, value):
fn = _finalizers.pop(id(task), None)
if fn is not None:
fn(task, value)
def close(task):
for iface in _paused:
_paused[iface].discard(task)
_queue.discard(task)
task.close()
finalize(task, GeneratorExit())
def run():
6 years ago
"""
Loop forever, stepping through scheduled tasks and awaiting I/O events
inbetween. Use `schedule` first to add a coroutine to the task queue.
Tasks yield back to the scheduler on any I/O, usually by calling `await` on
a `Syscall`.
6 years ago
"""
if __debug__:
global log_delay_pos
max_delay = const(1000000) # usec delay if queue is empty
task_entry = [0, 0, 0] # deadline, task, value
msg_entry = [0, 0] # iface | flags, value
while _queue or _paused:
# compute the maximum amount of time we can wait for a message
if _queue:
delay = utime.ticks_diff(_queue.peektime(), utime.ticks_us())
else:
delay = max_delay
if __debug__:
# add current delay to ring buffer for performance stats
log_delay_rb[log_delay_pos] = delay
log_delay_pos = (log_delay_pos + 1) % log_delay_rb_len
if io.poll(_paused, msg_entry, delay):
# message received, run tasks paused on the interface
msg_tasks = _paused.pop(msg_entry[0], ())
for task in msg_tasks:
_step(task, msg_entry[1])
else:
# timeout occurred, run the first scheduled task
if _queue:
_queue.pop(task_entry)
_step(task_entry[1], task_entry[2])
def _step(task, value):
try:
if isinstance(value, BaseException):
result = task.throw(value)
else:
result = task.send(value)
except StopIteration as e: # as e:
if __debug__:
6 years ago
log.debug(__name__, "finish: %s", task)
finalize(task, e.value)
except Exception as e:
if __debug__:
log.exception(__name__, e)
finalize(task, e)
else:
if isinstance(result, Syscall):
result.handle(task)
elif result is None:
schedule(task)
else:
if __debug__:
6 years ago
log.error(__name__, "unknown syscall: %s", result)
if after_step_hook:
after_step_hook()
class Syscall:
6 years ago
"""
When tasks want to perform any I/O, or do any sort of communication with the
scheduler, they do so through instances of a class derived from `Syscall`.
6 years ago
"""
def __iter__(self):
# support `yield from` or `await` on syscalls
return (yield self)
class sleep(Syscall):
6 years ago
"""
Pause current task and resume it after given delay. Although the delay is
given in microseconds, sub-millisecond precision is not guaranteed. Result
value is the calculated deadline.
Example:
>>> planned = await loop.sleep(1000 * 1000) # sleep for 1ms
>>> print('missed by %d us', utime.ticks_diff(utime.ticks_us(), planned))
6 years ago
"""
def __init__(self, delay_us):
self.delay_us = delay_us
def handle(self, task):
deadline = utime.ticks_add(utime.ticks_us(), self.delay_us)
schedule(task, deadline, deadline)
class wait(Syscall):
6 years ago
"""
Pause current task, and resume only after a message on `msg_iface` is
received. Messages are received either from an USB interface, or the
touch display. Result value a tuple of message values.
Example:
>>> hid_report, = await loop.wait(0xABCD) # await USB HID report
>>> event, x, y = await loop.wait(io.TOUCH) # await touch event
6 years ago
"""
def __init__(self, msg_iface):
self.msg_iface = msg_iface
def handle(self, task):
pause(task, self.msg_iface)
_NO_VALUE = ()
class signal(Syscall):
6 years ago
"""
Pause current task, and let other running task to resume it later with a
result value or an exception.
Example:
>>> # in task #1:
>>> signal = loop.signal()
>>> result = await signal
>>> print('awaited result:', result)
>>> # in task #2:
>>> signal.send('hello from task #2')
>>> # prints in the next iteration of the event loop
6 years ago
"""
def __init__(self):
self.reset()
def reset(self):
self.value = _NO_VALUE
self.task = None
def handle(self, task):
self.task = task
self._deliver()
def send(self, value):
self.value = value
self._deliver()
def _deliver(self):
if self.task is not None and self.value is not _NO_VALUE:
schedule(self.task, self.value)
self.task = None
self.value = _NO_VALUE
def __iter__(self):
try:
return (yield self)
except: # noqa: E722
self.task = None
raise
_type_gen = type((lambda: (yield))())
class spawn(Syscall):
6 years ago
"""
Execute one or more children tasks and wait until one of them exits.
Return value of `spawn` is the return value of task that triggered the
completion. By default, `spawn` returns after the first child completes, and
other running children are killed (by cancelling any pending schedules and
calling `close()`).
Example:
>>> # async def wait_for_touch(): ...
>>> # async def animate_logo(): ...
>>> touch_task = wait_for_touch()
>>> animation_task = animate_logo()
>>> waiter = loop.spawn(touch_task, animation_task)
>>> result = await waiter
>>> if animation_task in waiter.finished:
>>> print('animation task returned', result)
>>> else:
>>> print('touch task returned', result)
Note: You should not directly `yield` a `spawn` instance, see logic in
`spawn.__iter__` for explanation. Always use `await`.
6 years ago
"""
def __init__(self, *children, exit_others=True):
self.children = children
self.exit_others = exit_others
self.scheduled = [] # list of scheduled tasks
self.finished = [] # list of children that finished
self.callback = None
def handle(self, task):
finalizer = self._finish
scheduled = self.scheduled
finished = self.finished
self.callback = task
scheduled.clear()
finished.clear()
for child in self.children:
if isinstance(child, _type_gen):
child_task = child
else:
child_task = iter(child)
schedule(child_task, None, None, finalizer)
scheduled.append(child_task)
def exit(self, except_for=None):
for task in self.scheduled:
if task != except_for:
close(task)
def _finish(self, task, result):
if not self.finished:
for index, child_task in enumerate(self.scheduled):
if child_task is task:
child = self.children[index]
break
self.finished.append(child)
if self.exit_others:
self.exit(task)
schedule(self.callback, result)
def __iter__(self):
try:
return (yield self)
except: # noqa: E722
# exception was raised on the waiting task externally with
# close() or throw(), kill the children tasks and re-raise
self.exit()
raise