1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-27 01:48:17 +00:00
trezor-firmware/crypto/cardano.c

307 lines
10 KiB
C
Raw Normal View History

/**
* Copyright (c) 2013-2021 SatoshiLabs
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "bignum.h"
#include "bip32.h"
#include "cardano.h"
#include "curves.h"
#include "hasher.h"
#include "hmac.h"
#include "memzero.h"
#include "options.h"
#include "pbkdf2.h"
#include "sha2.h"
#if USE_CARDANO
#define CARDANO_MAX_NODE_DEPTH 1048576
const curve_info ed25519_cardano_info = {
.bip32_name = ED25519_CARDANO_NAME,
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) {
uint8_t prev_acc = 0;
for (int i = 0; i < bytes; i++) {
dst[i] = (src[i] << 3) + (prev_acc & 0x7);
prev_acc = src[i] >> 5;
}
dst[bytes] = src[bytes - 1] >> 5;
}
static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2,
uint8_t *dst) {
uint16_t r = 0;
for (int i = 0; i < 32; i++) {
r = r + (uint16_t)src1[i] + (uint16_t)src2[i];
dst[i] = r & 0xff;
r >>= 8;
}
}
static void cardano_ed25519_tweak_bits(uint8_t private_key[32]) {
private_key[0] &= 0xf8;
private_key[31] &= 0x1f;
private_key[31] |= 0x40;
}
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) {
if (inout->curve != &ed25519_cardano_info) {
return 0;
}
if (inout->depth >= CARDANO_MAX_NODE_DEPTH) {
return 0;
}
// checks for hardened/non-hardened derivation, keysize 32 means we are
// dealing with public key and thus non-h, keysize 64 is for private key
int keysize = 32;
if (index & 0x80000000) {
keysize = 64;
}
static CONFIDENTIAL uint8_t data[1 + 64 + 4];
static CONFIDENTIAL uint8_t z[32 + 32];
static CONFIDENTIAL uint8_t priv_key[64];
static CONFIDENTIAL uint8_t res_key[64];
write_le(data + keysize + 1, index);
memcpy(priv_key, inout->private_key, 32);
memcpy(priv_key + 32, inout->private_key_extension, 32);
if (keysize == 64) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
memcpy(data + 1 + 32, inout->private_key_extension, 32);
} else { // public derivation
if (hdnode_fill_public_key(inout) != 0) {
return 0;
}
data[0] = 2;
memcpy(data + 1, inout->public_key + 1, 32);
}
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
static CONFIDENTIAL uint8_t zl8[32];
memzero(zl8, 32);
/* get 8 * Zl */
scalar_multiply8(z, 28, zl8);
/* Kl = 8*Zl + parent(K)l */
scalar_add_256bits(zl8, priv_key, res_key);
/* Kr = Zr + parent(K)r */
scalar_add_256bits(z + 32, priv_key + 32, res_key + 32);
memcpy(inout->private_key, res_key, 32);
memcpy(inout->private_key_extension, res_key + 32, 32);
if (keysize == 64) {
data[0] = 1;
} else {
data[0] = 3;
}
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
memcpy(inout->chain_code, z + 32, 32);
inout->depth++;
inout->child_num = index;
memzero(inout->public_key, sizeof(inout->public_key));
// making sure to wipe our memory
memzero(z, sizeof(z));
memzero(data, sizeof(data));
memzero(priv_key, sizeof(priv_key));
memzero(res_key, sizeof(res_key));
return 1;
}
int hdnode_from_secret_cardano(const uint8_t secret[CARDANO_SECRET_LENGTH],
HDNode *out) {
memzero(out, sizeof(HDNode));
out->depth = 0;
out->child_num = 0;
out->curve = &ed25519_cardano_info;
memcpy(out->private_key, secret, 32);
memcpy(out->private_key_extension, secret + 32, 32);
memcpy(out->chain_code, secret + 64, 32);
cardano_ed25519_tweak_bits(out->private_key);
out->public_key[0] = 0;
if (hdnode_fill_public_key(out) != 0) {
return 0;
}
return 1;
}
// Derives the root Cardano secret from a master secret, aka seed, as defined in
// SLIP-0023.
int secret_from_seed_cardano_slip23(const uint8_t *seed, int seed_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH]) {
static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME,
strlen(ED25519_CARDANO_NAME));
hmac_sha512_Update(&ctx, seed, seed_len);
hmac_sha512_Final(&ctx, I);
sha512_Raw(I, 32, secret_out);
memcpy(secret_out + SHA512_DIGEST_LENGTH, I + 32, 32);
cardano_ed25519_tweak_bits(secret_out);
memzero(I, sizeof(I));
memzero(&ctx, sizeof(ctx));
return 1;
}
// Derives the root Cardano secret from a BIP-32 master secret via the Ledger
// derivation:
// https://github.com/cardano-foundation/CIPs/blob/09d7d8ee1bd64f7e6b20b5a6cae088039dce00cb/CIP-0003/Ledger.md
int secret_from_seed_cardano_ledger(const uint8_t *seed, int seed_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH]) {
static CONFIDENTIAL uint8_t chain_code[SHA256_DIGEST_LENGTH];
static CONFIDENTIAL uint8_t root_key[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL HMAC_SHA256_CTX ctx;
static CONFIDENTIAL HMAC_SHA512_CTX sctx;
const uint8_t *intermediate_result = seed;
int intermediate_result_len = seed_len;
do {
// STEP 1: derive a master secret like in BIP-32/SLIP-10
hmac_sha512_Init(&sctx, (const uint8_t *)ED25519_SEED_NAME,
strlen(ED25519_SEED_NAME));
hmac_sha512_Update(&sctx, intermediate_result, intermediate_result_len);
hmac_sha512_Final(&sctx, root_key);
// STEP 2: check that the resulting key does not have a particular bit set,
// otherwise iterate like in SLIP-10
intermediate_result = root_key;
intermediate_result_len = sizeof(root_key);
} while (root_key[31] & 0x20);
// STEP 3: calculate the chain code as a HMAC-SHA256 of "\x01" + seed,
// key is "ed25519 seed"
hmac_sha256_Init(&ctx, (const unsigned char *)ED25519_SEED_NAME,
strlen(ED25519_SEED_NAME));
hmac_sha256_Update(&ctx, (const unsigned char *)"\x01", 1);
hmac_sha256_Update(&ctx, seed, seed_len);
hmac_sha256_Final(&ctx, chain_code);
// STEP 4: extract information into output
_Static_assert(
SHA512_DIGEST_LENGTH + SHA256_DIGEST_LENGTH == CARDANO_SECRET_LENGTH,
"Invalid configuration of Cardano secret size");
memcpy(secret_out, root_key, SHA512_DIGEST_LENGTH);
memcpy(secret_out + SHA512_DIGEST_LENGTH, chain_code, SHA256_DIGEST_LENGTH);
// STEP 5: tweak bits of the private key
cardano_ed25519_tweak_bits(secret_out);
memzero(&ctx, sizeof(ctx));
memzero(&sctx, sizeof(sctx));
memzero(root_key, sizeof(root_key));
memzero(chain_code, sizeof(chain_code));
return 1;
}
#define CARDANO_ICARUS_STEPS 32
_Static_assert(
CARDANO_ICARUS_PBKDF2_ROUNDS % CARDANO_ICARUS_STEPS == 0,
"CARDANO_ICARUS_STEPS does not divide CARDANO_ICARUS_PBKDF2_ROUNDS");
#define CARDANO_ICARUS_ROUNDS_PER_STEP \
(CARDANO_ICARUS_PBKDF2_ROUNDS / CARDANO_ICARUS_STEPS)
// Derives the root Cardano HDNode from a passphrase and the entropy encoded in
// a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation
// scheme:
// https://github.com/cardano-foundation/CIPs/blob/09d7d8ee1bd64f7e6b20b5a6cae088039dce00cb/CIP-0003/Icarus.md
int secret_from_entropy_cardano_icarus(
const uint8_t *pass, int pass_len, const uint8_t *entropy, int entropy_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH],
void (*progress_callback)(uint32_t, uint32_t)) {
static CONFIDENTIAL PBKDF2_HMAC_SHA512_CTX pctx;
static CONFIDENTIAL uint8_t digest[SHA512_DIGEST_LENGTH];
uint32_t progress = 0;
// PASS 1: first 64 bytes
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 1);
if (progress_callback) {
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
if (progress_callback) {
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
}
pbkdf2_hmac_sha512_Final(&pctx, digest);
memcpy(secret_out, digest, SHA512_DIGEST_LENGTH);
// PASS 2: remaining 32 bytes
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 2);
if (progress_callback) {
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
if (progress_callback) {
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
}
pbkdf2_hmac_sha512_Final(&pctx, digest);
memcpy(secret_out + SHA512_DIGEST_LENGTH, digest,
CARDANO_SECRET_LENGTH - SHA512_DIGEST_LENGTH);
cardano_ed25519_tweak_bits(secret_out);
memzero(&pctx, sizeof(pctx));
memzero(digest, sizeof(digest));
return 1;
}
#endif // USE_CARDANO