refactor(crypto): extract Cardano derivations to separate file

Changes the API: all Cardano derivations will now produce a 96-byte
secret in the format of private_key + private_key_ext + chain_code.
This can then be trivially converted to a HDNode.
pull/1882/head
matejcik 3 years ago committed by matejcik
parent 05cbda4a7a
commit 1174648777

@ -100,6 +100,7 @@ SRCS += schnorr.c
SRCS += zkp_context.c
SRCS += zkp_ecdsa.c
SRCS += zkp_bip340.c
SRCS += cardano.c
OBJS = $(SRCS:.c=.o)
OBJS += secp256k1-zkp.o

@ -30,6 +30,7 @@
#include "base58.h"
#include "bignum.h"
#include "bip32.h"
#include "cardano.h"
#include "curves.h"
#include "ecdsa.h"
#include "ed25519-donna/ed25519-sha3.h"
@ -45,13 +46,8 @@
#if USE_NEM
#include "nem.h"
#endif
#if USE_CARDANO
#include "pbkdf2.h"
#endif
#include "memzero.h"
#define CARDANO_MAX_NODE_DEPTH 1048576
const curve_info ed25519_info = {
.bip32_name = "ed25519 seed",
.params = NULL,
@ -61,15 +57,6 @@ const curve_info ed25519_info = {
.hasher_script = HASHER_SHA2,
};
const curve_info ed25519_cardano_info = {
.bip32_name = "ed25519 cardano seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
const curve_info ed25519_sha3_info = {
.bip32_name = "ed25519-sha3 seed",
.params = NULL,
@ -203,11 +190,17 @@ uint32_t hdnode_fingerprint(HDNode *node) {
return fingerprint;
}
int hdnode_private_ckd(HDNode *inout, uint32_t i) {
int hdnode_private_ckd_bip32(HDNode *inout, uint32_t i) {
static CONFIDENTIAL uint8_t data[1 + 32 + 4];
static CONFIDENTIAL uint8_t I[32 + 32];
static CONFIDENTIAL bignum256 a, b;
#if USE_CARDANO
if (inout->curve == &ed25519_cardano_info) {
return 0;
}
#endif
if (i & 0x80000000) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
@ -271,160 +264,17 @@ int hdnode_private_ckd(HDNode *inout, uint32_t i) {
return 1;
}
int hdnode_private_ckd(HDNode *inout, uint32_t i) {
#if USE_CARDANO
static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) {
uint8_t prev_acc = 0;
for (int i = 0; i < bytes; i++) {
dst[i] = (src[i] << 3) + (prev_acc & 0x7);
prev_acc = src[i] >> 5;
}
dst[bytes] = src[bytes - 1] >> 5;
}
static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2,
uint8_t *dst) {
uint16_t r = 0;
for (int i = 0; i < 32; i++) {
r = r + (uint16_t)src1[i] + (uint16_t)src2[i];
dst[i] = r & 0xff;
r >>= 8;
}
}
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) {
if (inout->depth >= CARDANO_MAX_NODE_DEPTH) {
return 0;
}
// checks for hardened/non-hardened derivation, keysize 32 means we are
// dealing with public key and thus non-h, keysize 64 is for private key
int keysize = 32;
if (index & 0x80000000) {
keysize = 64;
}
static CONFIDENTIAL uint8_t data[1 + 64 + 4];
static CONFIDENTIAL uint8_t z[32 + 32];
static CONFIDENTIAL uint8_t priv_key[64];
static CONFIDENTIAL uint8_t res_key[64];
write_le(data + keysize + 1, index);
memcpy(priv_key, inout->private_key, 32);
memcpy(priv_key + 32, inout->private_key_extension, 32);
if (keysize == 64) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
memcpy(data + 1 + 32, inout->private_key_extension, 32);
} else { // public derivation
if (hdnode_fill_public_key(inout) != 0) {
return 0;
}
data[0] = 2;
memcpy(data + 1, inout->public_key + 1, 32);
}
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
static CONFIDENTIAL uint8_t zl8[32];
memzero(zl8, 32);
/* get 8 * Zl */
scalar_multiply8(z, 28, zl8);
/* Kl = 8*Zl + parent(K)l */
scalar_add_256bits(zl8, priv_key, res_key);
/* Kr = Zr + parent(K)r */
scalar_add_256bits(z + 32, priv_key + 32, res_key + 32);
memcpy(inout->private_key, res_key, 32);
memcpy(inout->private_key_extension, res_key + 32, 32);
if (keysize == 64) {
data[0] = 1;
} else {
data[0] = 3;
}
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
memcpy(inout->chain_code, z + 32, 32);
inout->depth++;
inout->child_num = index;
memzero(inout->public_key, sizeof(inout->public_key));
// making sure to wipe our memory
memzero(z, sizeof(z));
memzero(data, sizeof(data));
memzero(priv_key, sizeof(priv_key));
memzero(res_key, sizeof(res_key));
return 1;
}
static int hdnode_from_secret_cardano(const uint8_t *k,
const uint8_t *chain_code, HDNode *out) {
memzero(out, sizeof(HDNode));
out->depth = 0;
out->child_num = 0;
out->curve = &ed25519_cardano_info;
memcpy(out->private_key, k, 32);
memcpy(out->private_key_extension, k + 32, 32);
memcpy(out->chain_code, chain_code, 32);
out->private_key[0] &= 0xf8;
out->private_key[31] &= 0x1f;
out->private_key[31] |= 0x40;
out->public_key[0] = 0;
if (hdnode_fill_public_key(out) != 0) {
return 0;
if (inout->curve == &ed25519_cardano_info) {
return hdnode_private_ckd_cardano(inout, i);
} else
#endif
{
return hdnode_private_ckd_bip32(inout, i);
}
return 1;
}
// Derives the root Cardano HDNode from a master secret, aka seed, as defined in
// SLIP-0023.
int hdnode_from_seed_cardano(const uint8_t *seed, int seed_len, HDNode *out) {
static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL uint8_t k[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME,
strlen(ED25519_CARDANO_NAME));
hmac_sha512_Update(&ctx, seed, seed_len);
hmac_sha512_Final(&ctx, I);
sha512_Raw(I, 32, k);
int ret = hdnode_from_secret_cardano(k, I + 32, out);
memzero(I, sizeof(I));
memzero(k, sizeof(k));
memzero(&ctx, sizeof(ctx));
return ret;
}
// Derives the root Cardano HDNode from a passphrase and the entropy encoded in
// a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation
// scheme.
int hdnode_from_entropy_cardano_icarus(const uint8_t *pass, int pass_len,
const uint8_t *entropy, int entropy_len,
HDNode *out) {
static CONFIDENTIAL uint8_t secret[96];
pbkdf2_hmac_sha512(pass, pass_len, entropy, entropy_len, 4096, secret, 96);
int ret = hdnode_from_secret_cardano(secret, secret + 64, out);
memzero(secret, sizeof(secret));
return ret;
}
#endif
int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent,
const uint8_t *parent_chain_code, uint32_t i,
curve_point *child, uint8_t *child_chain_code) {
@ -952,9 +802,11 @@ const curve_info *get_curve_by_name(const char *curve_name) {
if (strcmp(curve_name, ED25519_NAME) == 0) {
return &ed25519_info;
}
#if USE_CARDANO
if (strcmp(curve_name, ED25519_CARDANO_NAME) == 0) {
return &ed25519_cardano_info;
}
#endif
if (strcmp(curve_name, ED25519_SHA3_NAME) == 0) {
return &ed25519_sha3_info;
}

@ -75,14 +75,6 @@ int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve,
int hdnode_private_ckd(HDNode *inout, uint32_t i);
#if USE_CARDANO
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t i);
int hdnode_from_seed_cardano(const uint8_t *seed, int seed_len, HDNode *out);
int hdnode_from_entropy_cardano_icarus(const uint8_t *pass, int pass_len,
const uint8_t *seed, int seed_len,
HDNode *out);
#endif
int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent,
const uint8_t *parent_chain_code, uint32_t i,
curve_point *child, uint8_t *child_chain_code);

@ -0,0 +1,252 @@
/**
* Copyright (c) 2013-2021 SatoshiLabs
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "bignum.h"
#include "bip32.h"
#include "cardano.h"
#include "curves.h"
#include "hasher.h"
#include "hmac.h"
#include "memzero.h"
#include "options.h"
#include "pbkdf2.h"
#include "sha2.h"
#if USE_CARDANO
#define CARDANO_MAX_NODE_DEPTH 1048576
const curve_info ed25519_cardano_info = {
.bip32_name = "ed25519 cardano seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) {
uint8_t prev_acc = 0;
for (int i = 0; i < bytes; i++) {
dst[i] = (src[i] << 3) + (prev_acc & 0x7);
prev_acc = src[i] >> 5;
}
dst[bytes] = src[bytes - 1] >> 5;
}
static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2,
uint8_t *dst) {
uint16_t r = 0;
for (int i = 0; i < 32; i++) {
r = r + (uint16_t)src1[i] + (uint16_t)src2[i];
dst[i] = r & 0xff;
r >>= 8;
}
}
static void cardano_ed25519_tweak_bits(uint8_t private_key[32]) {
private_key[0] &= 0xf8;
private_key[31] &= 0x1f;
private_key[31] |= 0x40;
}
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) {
if (inout->curve != &ed25519_cardano_info) {
return 0;
}
if (inout->depth >= CARDANO_MAX_NODE_DEPTH) {
return 0;
}
// checks for hardened/non-hardened derivation, keysize 32 means we are
// dealing with public key and thus non-h, keysize 64 is for private key
int keysize = 32;
if (index & 0x80000000) {
keysize = 64;
}
static CONFIDENTIAL uint8_t data[1 + 64 + 4];
static CONFIDENTIAL uint8_t z[32 + 32];
static CONFIDENTIAL uint8_t priv_key[64];
static CONFIDENTIAL uint8_t res_key[64];
write_le(data + keysize + 1, index);
memcpy(priv_key, inout->private_key, 32);
memcpy(priv_key + 32, inout->private_key_extension, 32);
if (keysize == 64) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
memcpy(data + 1 + 32, inout->private_key_extension, 32);
} else { // public derivation
if (hdnode_fill_public_key(inout) != 0) {
return 0;
}
data[0] = 2;
memcpy(data + 1, inout->public_key + 1, 32);
}
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
static CONFIDENTIAL uint8_t zl8[32];
memzero(zl8, 32);
/* get 8 * Zl */
scalar_multiply8(z, 28, zl8);
/* Kl = 8*Zl + parent(K)l */
scalar_add_256bits(zl8, priv_key, res_key);
/* Kr = Zr + parent(K)r */
scalar_add_256bits(z + 32, priv_key + 32, res_key + 32);
memcpy(inout->private_key, res_key, 32);
memcpy(inout->private_key_extension, res_key + 32, 32);
if (keysize == 64) {
data[0] = 1;
} else {
data[0] = 3;
}
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
memcpy(inout->chain_code, z + 32, 32);
inout->depth++;
inout->child_num = index;
memzero(inout->public_key, sizeof(inout->public_key));
// making sure to wipe our memory
memzero(z, sizeof(z));
memzero(data, sizeof(data));
memzero(priv_key, sizeof(priv_key));
memzero(res_key, sizeof(res_key));
return 1;
}
int hdnode_from_secret_cardano(const uint8_t secret[CARDANO_SECRET_LENGTH],
HDNode *out) {
memzero(out, sizeof(HDNode));
out->depth = 0;
out->child_num = 0;
out->curve = &ed25519_cardano_info;
memcpy(out->private_key, secret, 32);
memcpy(out->private_key_extension, secret + 32, 32);
memcpy(out->chain_code, secret + 64, 32);
cardano_ed25519_tweak_bits(out->private_key);
out->public_key[0] = 0;
if (hdnode_fill_public_key(out) != 0) {
return 0;
}
return 1;
}
// Derives the root Cardano secret from a master secret, aka seed, as defined in
// SLIP-0023.
int secret_from_seed_cardano_slip23(const uint8_t *seed, int seed_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH]) {
static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME,
strlen(ED25519_CARDANO_NAME));
hmac_sha512_Update(&ctx, seed, seed_len);
hmac_sha512_Final(&ctx, I);
sha512_Raw(I, 32, secret_out);
memcpy(secret_out + SHA512_DIGEST_LENGTH, I + 32, 32);
cardano_ed25519_tweak_bits(secret_out);
memzero(I, sizeof(I));
memzero(&ctx, sizeof(ctx));
return 1;
}
#define CARDANO_ICARUS_STEPS 32
#define CARDANO_ICARUS_ROUNDS_PER_STEP \
(CARDANO_ICARUS_PBKDF2_ROUNDS / CARDANO_ICARUS_STEPS)
// Derives the root Cardano HDNode from a passphrase and the entropy encoded in
// a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation
// scheme.
int secret_from_entropy_cardano_icarus(
const uint8_t *pass, int pass_len, const uint8_t *entropy, int entropy_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH],
void (*progress_callback)(uint32_t, uint32_t)) {
static CONFIDENTIAL PBKDF2_HMAC_SHA512_CTX pctx;
static CONFIDENTIAL uint8_t digest[SHA512_DIGEST_LENGTH];
uint32_t progress = 0;
// PASS 1: first 64 bytes
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 1);
if (progress_callback) {
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
if (progress_callback) {
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
}
pbkdf2_hmac_sha512_Final(&pctx, digest);
memcpy(secret_out, digest, SHA512_DIGEST_LENGTH);
// PASS 2: remaining 32 bytes
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 2);
if (progress_callback) {
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
if (progress_callback) {
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
}
}
pbkdf2_hmac_sha512_Final(&pctx, digest);
memcpy(secret_out + SHA512_DIGEST_LENGTH, digest,
CARDANO_SECRET_LENGTH - SHA512_DIGEST_LENGTH);
cardano_ed25519_tweak_bits(secret_out);
memzero(&pctx, sizeof(pctx));
memzero(digest, sizeof(digest));
return 1;
}
#endif // USE_CARDANO

@ -0,0 +1,54 @@
/**
* Copyright (c) 2013-2021 SatoshiLabs
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef __CARDANO_H__
#define __CARDANO_H__
#include <stdbool.h>
#include <stdint.h>
#include "bip32.h"
#include "options.h"
#if USE_CARDANO
#define CARDANO_SECRET_LENGTH 96
#define CARDANO_ICARUS_PBKDF2_ROUNDS 4096
extern const curve_info ed25519_cardano_info;
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t i);
int secret_from_entropy_cardano_icarus(
const uint8_t *pass, int pass_len, const uint8_t *entropy, int entropy_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH],
void (*progress_callback)(uint32_t current, uint32_t total));
int secret_from_seed_cardano_ledger(const uint8_t *seed, int seed_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH]);
int secret_from_seed_cardano_slip23(const uint8_t *seed, int seed_len,
uint8_t secret_out[CARDANO_SECRET_LENGTH]);
int hdnode_from_secret_cardano(const uint8_t secret[CARDANO_SECRET_LENGTH],
HDNode *out);
#endif // USE_CARDANO
#endif // __CARDANO_H__

@ -48,6 +48,7 @@
#include "blake256.h"
#include "blake2b.h"
#include "blake2s.h"
#include "cardano.h"
#include "chacha_drbg.h"
#include "curves.h"
#include "ecdsa.h"

@ -113,14 +113,24 @@ START_TEST(test_bip32_cardano_hdnode_vector_1) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
ck_assert_mem_eq(
cardano_secret,
fromhex(
"08a14df748e477a69d21c97c56db151fc19e2521f31dd0ac5360f269e5b6ea46"
"daeb991f2d2128e2525415c56a07f4366baa26c1e48572a5e073934b6de35fbc"
"affbc325d9027c0f2d9f925b1dcf6c12bf5c1dd08904474066a4f2c00db56173"),
96);
ck_assert_mem_eq(
node.chain_code,
fromhex(
@ -149,15 +159,18 @@ START_TEST(test_bip32_cardano_hdnode_vector_2) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000000);
ck_assert_mem_eq(
node.chain_code,
@ -187,15 +200,18 @@ START_TEST(test_bip32_cardano_hdnode_vector_3) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000001);
ck_assert_mem_eq(
node.chain_code,
@ -225,16 +241,19 @@ START_TEST(test_bip32_cardano_hdnode_vector_4) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
ck_assert_mem_eq(
node.chain_code,
@ -264,17 +283,20 @@ START_TEST(test_bip32_cardano_hdnode_vector_5) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000002);
ck_assert_mem_eq(
node.chain_code,
@ -304,18 +326,21 @@ START_TEST(test_bip32_cardano_hdnode_vector_6) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000002);
ck_assert_mem_eq(
node.chain_code,
@ -345,19 +370,22 @@ START_TEST(test_bip32_cardano_hdnode_vector_7) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"ring crime symptom enough erupt lady behave ramp apart settle citizen "
"junk",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 132);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0xBB9ACA00);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0xBB9ACA00);
ck_assert_mem_eq(
node.chain_code,
@ -387,19 +415,22 @@ START_TEST(test_bip32_cardano_hdnode_vector_8) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"found differ bulb shadow wrist blue bind vessel deposit tip pelican "
"action surprise weapon check fiction muscle this",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 198);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0xBB9ACA00);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0xBB9ACA00);
ck_assert_mem_eq(
node.chain_code,
@ -429,20 +460,23 @@ START_TEST(test_bip32_cardano_hdnode_vector_9) {
HDNode node;
uint8_t mnemonic_bits[66];
uint8_t cardano_secret[CARDANO_SECRET_LENGTH];
int mnemonic_bits_len = mnemonic_to_bits(
"balance exotic ranch knife glory slow tape favorite yard gym awake "
"ill exist useless parent aim pig stay effort into square gasp credit "
"butter",
mnemonic_bits);
ck_assert_int_eq(mnemonic_bits_len, 264);
hdnode_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, &node);
hdnode_private_ckd_cardano(&node, 0x80000000);
hdnode_private_ckd_cardano(&node, 0x80000001);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0x80000002);
hdnode_private_ckd_cardano(&node, 0xBB9ACA00);
secret_from_entropy_cardano_icarus((const uint8_t *)"", 0, mnemonic_bits,
mnemonic_bits_len / 8, cardano_secret,
NULL);
hdnode_from_secret_cardano(cardano_secret, &node);
hdnode_private_ckd(&node, 0x80000000);
hdnode_private_ckd(&node, 0x80000001);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0x80000002);
hdnode_private_ckd(&node, 0xBB9ACA00);
ck_assert_mem_eq(
node.chain_code,

Loading…
Cancel
Save