2021-10-14 10:41:16 +00:00
|
|
|
/**
|
|
|
|
* Copyright (c) 2013-2021 SatoshiLabs
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included
|
|
|
|
* in all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "bignum.h"
|
|
|
|
#include "bip32.h"
|
|
|
|
#include "cardano.h"
|
|
|
|
#include "curves.h"
|
|
|
|
#include "hasher.h"
|
|
|
|
#include "hmac.h"
|
|
|
|
#include "memzero.h"
|
|
|
|
#include "options.h"
|
|
|
|
#include "pbkdf2.h"
|
|
|
|
#include "sha2.h"
|
|
|
|
|
|
|
|
#if USE_CARDANO
|
|
|
|
|
|
|
|
#define CARDANO_MAX_NODE_DEPTH 1048576
|
|
|
|
|
|
|
|
const curve_info ed25519_cardano_info = {
|
2021-10-20 12:51:54 +00:00
|
|
|
.bip32_name = ED25519_CARDANO_NAME,
|
2021-10-14 10:41:16 +00:00
|
|
|
.params = NULL,
|
|
|
|
.hasher_base58 = HASHER_SHA2D,
|
|
|
|
.hasher_sign = HASHER_SHA2D,
|
|
|
|
.hasher_pubkey = HASHER_SHA2_RIPEMD,
|
|
|
|
.hasher_script = HASHER_SHA2,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) {
|
|
|
|
uint8_t prev_acc = 0;
|
|
|
|
for (int i = 0; i < bytes; i++) {
|
|
|
|
dst[i] = (src[i] << 3) + (prev_acc & 0x7);
|
|
|
|
prev_acc = src[i] >> 5;
|
|
|
|
}
|
|
|
|
dst[bytes] = src[bytes - 1] >> 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2,
|
|
|
|
uint8_t *dst) {
|
|
|
|
uint16_t r = 0;
|
|
|
|
for (int i = 0; i < 32; i++) {
|
|
|
|
r = r + (uint16_t)src1[i] + (uint16_t)src2[i];
|
|
|
|
dst[i] = r & 0xff;
|
|
|
|
r >>= 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cardano_ed25519_tweak_bits(uint8_t private_key[32]) {
|
|
|
|
private_key[0] &= 0xf8;
|
|
|
|
private_key[31] &= 0x1f;
|
|
|
|
private_key[31] |= 0x40;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) {
|
|
|
|
if (inout->curve != &ed25519_cardano_info) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (inout->depth >= CARDANO_MAX_NODE_DEPTH) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// checks for hardened/non-hardened derivation, keysize 32 means we are
|
|
|
|
// dealing with public key and thus non-h, keysize 64 is for private key
|
|
|
|
int keysize = 32;
|
|
|
|
if (index & 0x80000000) {
|
|
|
|
keysize = 64;
|
|
|
|
}
|
|
|
|
|
|
|
|
static CONFIDENTIAL uint8_t data[1 + 64 + 4];
|
|
|
|
static CONFIDENTIAL uint8_t z[32 + 32];
|
|
|
|
static CONFIDENTIAL uint8_t priv_key[64];
|
|
|
|
static CONFIDENTIAL uint8_t res_key[64];
|
|
|
|
|
|
|
|
write_le(data + keysize + 1, index);
|
|
|
|
|
|
|
|
memcpy(priv_key, inout->private_key, 32);
|
|
|
|
memcpy(priv_key + 32, inout->private_key_extension, 32);
|
|
|
|
|
|
|
|
if (keysize == 64) { // private derivation
|
|
|
|
data[0] = 0;
|
|
|
|
memcpy(data + 1, inout->private_key, 32);
|
|
|
|
memcpy(data + 1 + 32, inout->private_key_extension, 32);
|
|
|
|
} else { // public derivation
|
|
|
|
if (hdnode_fill_public_key(inout) != 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
data[0] = 2;
|
|
|
|
memcpy(data + 1, inout->public_key + 1, 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
|
|
|
|
hmac_sha512_Init(&ctx, inout->chain_code, 32);
|
|
|
|
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
|
|
|
|
hmac_sha512_Final(&ctx, z);
|
|
|
|
|
|
|
|
static CONFIDENTIAL uint8_t zl8[32];
|
|
|
|
memzero(zl8, 32);
|
|
|
|
|
|
|
|
/* get 8 * Zl */
|
|
|
|
scalar_multiply8(z, 28, zl8);
|
|
|
|
/* Kl = 8*Zl + parent(K)l */
|
|
|
|
scalar_add_256bits(zl8, priv_key, res_key);
|
|
|
|
|
|
|
|
/* Kr = Zr + parent(K)r */
|
|
|
|
scalar_add_256bits(z + 32, priv_key + 32, res_key + 32);
|
|
|
|
|
|
|
|
memcpy(inout->private_key, res_key, 32);
|
|
|
|
memcpy(inout->private_key_extension, res_key + 32, 32);
|
|
|
|
|
|
|
|
if (keysize == 64) {
|
|
|
|
data[0] = 1;
|
|
|
|
} else {
|
|
|
|
data[0] = 3;
|
|
|
|
}
|
|
|
|
hmac_sha512_Init(&ctx, inout->chain_code, 32);
|
|
|
|
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
|
|
|
|
hmac_sha512_Final(&ctx, z);
|
|
|
|
|
|
|
|
memcpy(inout->chain_code, z + 32, 32);
|
|
|
|
inout->depth++;
|
|
|
|
inout->child_num = index;
|
|
|
|
memzero(inout->public_key, sizeof(inout->public_key));
|
|
|
|
|
|
|
|
// making sure to wipe our memory
|
|
|
|
memzero(z, sizeof(z));
|
|
|
|
memzero(data, sizeof(data));
|
|
|
|
memzero(priv_key, sizeof(priv_key));
|
|
|
|
memzero(res_key, sizeof(res_key));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hdnode_from_secret_cardano(const uint8_t secret[CARDANO_SECRET_LENGTH],
|
|
|
|
HDNode *out) {
|
|
|
|
memzero(out, sizeof(HDNode));
|
|
|
|
out->depth = 0;
|
|
|
|
out->child_num = 0;
|
|
|
|
out->curve = &ed25519_cardano_info;
|
|
|
|
memcpy(out->private_key, secret, 32);
|
|
|
|
memcpy(out->private_key_extension, secret + 32, 32);
|
|
|
|
memcpy(out->chain_code, secret + 64, 32);
|
|
|
|
|
|
|
|
cardano_ed25519_tweak_bits(out->private_key);
|
|
|
|
|
|
|
|
out->public_key[0] = 0;
|
|
|
|
if (hdnode_fill_public_key(out) != 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Derives the root Cardano secret from a master secret, aka seed, as defined in
|
|
|
|
// SLIP-0023.
|
|
|
|
int secret_from_seed_cardano_slip23(const uint8_t *seed, int seed_len,
|
|
|
|
uint8_t secret_out[CARDANO_SECRET_LENGTH]) {
|
|
|
|
static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH];
|
|
|
|
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
|
|
|
|
|
|
|
|
hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME,
|
|
|
|
strlen(ED25519_CARDANO_NAME));
|
|
|
|
hmac_sha512_Update(&ctx, seed, seed_len);
|
|
|
|
hmac_sha512_Final(&ctx, I);
|
|
|
|
|
|
|
|
sha512_Raw(I, 32, secret_out);
|
|
|
|
|
|
|
|
memcpy(secret_out + SHA512_DIGEST_LENGTH, I + 32, 32);
|
|
|
|
cardano_ed25519_tweak_bits(secret_out);
|
|
|
|
|
|
|
|
memzero(I, sizeof(I));
|
|
|
|
memzero(&ctx, sizeof(ctx));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2021-10-20 12:51:54 +00:00
|
|
|
// Derives the root Cardano secret from a BIP-32 master secret via the Ledger
|
|
|
|
// derivation:
|
|
|
|
// https://github.com/cardano-foundation/CIPs/blob/09d7d8ee1bd64f7e6b20b5a6cae088039dce00cb/CIP-0003/Ledger.md
|
|
|
|
int secret_from_seed_cardano_ledger(const uint8_t *seed, int seed_len,
|
|
|
|
uint8_t secret_out[CARDANO_SECRET_LENGTH]) {
|
|
|
|
static CONFIDENTIAL uint8_t chain_code[SHA256_DIGEST_LENGTH];
|
|
|
|
static CONFIDENTIAL uint8_t root_key[SHA512_DIGEST_LENGTH];
|
|
|
|
static CONFIDENTIAL HMAC_SHA256_CTX ctx;
|
|
|
|
static CONFIDENTIAL HMAC_SHA512_CTX sctx;
|
|
|
|
|
|
|
|
const uint8_t *intermediate_result = seed;
|
|
|
|
int intermediate_result_len = seed_len;
|
|
|
|
do {
|
|
|
|
// STEP 1: derive a master secret like in BIP-32/SLIP-10
|
|
|
|
hmac_sha512_Init(&sctx, (const uint8_t *)ED25519_SEED_NAME,
|
|
|
|
strlen(ED25519_SEED_NAME));
|
|
|
|
hmac_sha512_Update(&sctx, intermediate_result, intermediate_result_len);
|
|
|
|
hmac_sha512_Final(&sctx, root_key);
|
|
|
|
|
|
|
|
// STEP 2: check that the resulting key does not have a particular bit set,
|
|
|
|
// otherwise iterate like in SLIP-10
|
|
|
|
intermediate_result = root_key;
|
|
|
|
intermediate_result_len = sizeof(root_key);
|
|
|
|
} while (root_key[31] & 0x20);
|
|
|
|
|
|
|
|
// STEP 3: calculate the chain code as a HMAC-SHA256 of "\x01" + seed,
|
|
|
|
// key is "ed25519 seed"
|
|
|
|
hmac_sha256_Init(&ctx, (const unsigned char *)ED25519_SEED_NAME,
|
|
|
|
strlen(ED25519_SEED_NAME));
|
|
|
|
hmac_sha256_Update(&ctx, (const unsigned char *)"\x01", 1);
|
|
|
|
hmac_sha256_Update(&ctx, seed, seed_len);
|
|
|
|
hmac_sha256_Final(&ctx, chain_code);
|
|
|
|
|
|
|
|
// STEP 4: extract information into output
|
|
|
|
_Static_assert(
|
|
|
|
SHA512_DIGEST_LENGTH + SHA256_DIGEST_LENGTH == CARDANO_SECRET_LENGTH,
|
|
|
|
"Invalid configuration of Cardano secret size");
|
|
|
|
memcpy(secret_out, root_key, SHA512_DIGEST_LENGTH);
|
|
|
|
memcpy(secret_out + SHA512_DIGEST_LENGTH, chain_code, SHA256_DIGEST_LENGTH);
|
|
|
|
|
|
|
|
// STEP 5: tweak bits of the private key
|
|
|
|
cardano_ed25519_tweak_bits(secret_out);
|
|
|
|
|
|
|
|
memzero(&ctx, sizeof(ctx));
|
|
|
|
memzero(&sctx, sizeof(sctx));
|
|
|
|
memzero(root_key, sizeof(root_key));
|
|
|
|
memzero(chain_code, sizeof(chain_code));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2021-10-14 10:41:16 +00:00
|
|
|
#define CARDANO_ICARUS_STEPS 32
|
2021-10-20 12:51:54 +00:00
|
|
|
_Static_assert(
|
|
|
|
CARDANO_ICARUS_PBKDF2_ROUNDS % CARDANO_ICARUS_STEPS == 0,
|
|
|
|
"CARDANO_ICARUS_STEPS does not divide CARDANO_ICARUS_PBKDF2_ROUNDS");
|
2021-10-14 10:41:16 +00:00
|
|
|
#define CARDANO_ICARUS_ROUNDS_PER_STEP \
|
|
|
|
(CARDANO_ICARUS_PBKDF2_ROUNDS / CARDANO_ICARUS_STEPS)
|
|
|
|
|
|
|
|
// Derives the root Cardano HDNode from a passphrase and the entropy encoded in
|
|
|
|
// a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation
|
2021-10-20 12:51:54 +00:00
|
|
|
// scheme:
|
|
|
|
// https://github.com/cardano-foundation/CIPs/blob/09d7d8ee1bd64f7e6b20b5a6cae088039dce00cb/CIP-0003/Icarus.md
|
2021-10-14 10:41:16 +00:00
|
|
|
int secret_from_entropy_cardano_icarus(
|
|
|
|
const uint8_t *pass, int pass_len, const uint8_t *entropy, int entropy_len,
|
|
|
|
uint8_t secret_out[CARDANO_SECRET_LENGTH],
|
|
|
|
void (*progress_callback)(uint32_t, uint32_t)) {
|
|
|
|
static CONFIDENTIAL PBKDF2_HMAC_SHA512_CTX pctx;
|
|
|
|
static CONFIDENTIAL uint8_t digest[SHA512_DIGEST_LENGTH];
|
|
|
|
uint32_t progress = 0;
|
|
|
|
|
|
|
|
// PASS 1: first 64 bytes
|
|
|
|
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 1);
|
|
|
|
if (progress_callback) {
|
|
|
|
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
|
|
|
|
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
|
|
|
|
if (progress_callback) {
|
|
|
|
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
|
|
|
|
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pbkdf2_hmac_sha512_Final(&pctx, digest);
|
|
|
|
|
|
|
|
memcpy(secret_out, digest, SHA512_DIGEST_LENGTH);
|
|
|
|
|
|
|
|
// PASS 2: remaining 32 bytes
|
|
|
|
pbkdf2_hmac_sha512_Init(&pctx, pass, pass_len, entropy, entropy_len, 2);
|
|
|
|
if (progress_callback) {
|
|
|
|
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < CARDANO_ICARUS_STEPS; i++) {
|
|
|
|
pbkdf2_hmac_sha512_Update(&pctx, CARDANO_ICARUS_ROUNDS_PER_STEP);
|
|
|
|
if (progress_callback) {
|
|
|
|
progress += CARDANO_ICARUS_ROUNDS_PER_STEP;
|
|
|
|
progress_callback(progress, CARDANO_ICARUS_PBKDF2_ROUNDS * 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pbkdf2_hmac_sha512_Final(&pctx, digest);
|
|
|
|
|
|
|
|
memcpy(secret_out + SHA512_DIGEST_LENGTH, digest,
|
|
|
|
CARDANO_SECRET_LENGTH - SHA512_DIGEST_LENGTH);
|
|
|
|
|
|
|
|
cardano_ed25519_tweak_bits(secret_out);
|
|
|
|
|
|
|
|
memzero(&pctx, sizeof(pctx));
|
|
|
|
memzero(digest, sizeof(digest));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // USE_CARDANO
|