RSA and Chinese Remainder Theorem (CRT)
Go to file
2014-10-31 16:05:37 +01:00
README.md minor updates 2014-10-31 16:05:37 +01:00
rsatest-crt-run.png minor updates 2014-10-31 15:58:55 +01:00
rsatest-ctr.py Initial commit 2014-10-31 15:49:52 +01:00

RSA and Chinese Remainder Theorem (CRT)

Using the Chinese Remainder Theorem you can run the decryption operation faster.

You can use as reference OpenSSL's RSA module that can produce following output, e.g.

$ openssl genrsa 32 |openssl rsa -noout -text
Generating RSA private key, 32 bit long modulus
.+++++++++++++++++++++++++++
.+++++++++++++++++++++++++++
e is 65537 (0x10001)
Private-Key: (32 bit)
modulus: 2719120549 (0xa2127ca5)
publicExponent: 65537 (0x10001)
privateExponent: 1790467441 (0x6ab85d71)
prime1: 53267 (0xd013)
prime2: 51047 (0xc767)
exponent1: 37383 (0x9207)
exponent2: 28991 (0x713f)
coefficient: 16388 (0x4004)

$ openssl genrsa 32 |openssl asn1parse