Initial commit

master
Andy 10 years ago
commit 91673288d1

@ -0,0 +1,23 @@
RSA and Chinese Remainder Theorem (CRT)
You can use as reference OpenSSL's RSA module that can produce following output, e.g.
```bash
$ openssl genrsa 32 |openssl rsa -noout -text
Generating RSA private key, 32 bit long modulus
.+++++++++++++++++++++++++++
.+++++++++++++++++++++++++++
e is 65537 (0x10001)
Private-Key: (32 bit)
modulus: 2719120549 (0xa2127ca5)
publicExponent: 65537 (0x10001)
privateExponent: 1790467441 (0x6ab85d71)
prime1: 53267 (0xd013)
prime2: 51047 (0xc767)
exponent1: 37383 (0x9207)
exponent2: 28991 (0x713f)
coefficient: 16388 (0x4004)
$ openssl genrsa 32 |openssl asn1parse
```

@ -0,0 +1,254 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# -------------------------------------
# RSA and Chinese Remainder Theorem (CRT)
# Copyright (C) 2014 Andrey Arapov
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# -------------------------------------
#
#
# Notes:
# - Based on the https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Key_generation
# and http://www.di-mgt.com.au/crt_rsa.html
# - The parameters used here are artificially small
# - I've tried to apply KISS principle here
#
#
import random
from fractions import gcd
class bcolors:
RED = '\033[91m'
DRED = '\033[31m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
BLUE = '\033[94m'
PURPLE = '\033[95m'
CYAN = '\033[96m'
ENDC = '\033[0m'
print "RSA and Chinese Remainder Theorem (CRT)\n"
# -----------------------------------------------------------------------------
# Generating the Public/Private keypair
# -----------------------------------------------------------------------------
# Primality test
# https://en.wikipedia.org/wiki/Primality_test#Python_implementation
def is_prime(num):
if num <= 3:
if num <= 1:
return False
return True
if not num % 2 or not num % 3:
return False
for i in range(5, int(num ** 0.5) + 1, 6):
if not num % i or not num % (i + 2):
return False
return True
# 1. Choose two distinct prime numbers p and q.
print "1. looking for two distinct prime numbers p and q in artificially small range..."
i = 0
while i < 2:
rand = random.randint(0x8000, 0xffff)
if is_prime(rand):
if i == 1:
q=rand
break
p=rand
i += 1
print "p =", bcolors.DRED, p, bcolors.ENDC, "\tprime?", is_prime(p), bcolors.YELLOW, "(prime1)", bcolors.ENDC
print "q =", bcolors.DRED, q, bcolors.ENDC, "\tprime?", is_prime(q), bcolors.YELLOW, "(prime2)", bcolors.ENDC
print
# 2. Compute n = pq.
print "2. computing the modulus n = pq ..."
n = p * q
print "n = p * q =", bcolors.DRED, p, bcolors.ENDC, "*", bcolors.DRED, q, bcolors.ENDC, "=", \
bcolors.BLUE, n, bcolors.ENDC, bcolors.YELLOW, "(modulus)", bcolors.ENDC
print
print "Private-Key will be "+bcolors.YELLOW+str(n.bit_length())+bcolors.ENDC+" bit long\n"
# 3. Compute φ(n) = φ(p)φ(q) = (p 1)(q 1) = n - (p + q - 1), where φ is Euler's totient function.
print "3. computing φ(n) = φ(p)φ(q) = (p 1)(q 1) = n - (p + q -1), where φ is Euler's totient function ..."
f_n = n - (p + q - 1)
print "φ(n) =", bcolors.DRED, f_n, bcolors.ENDC
print
# 4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime.
print "4. looking for an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime ..."
print "Setting e = 2^16+1 (65537) as per recommendation in\n"+ \
"Dan Boneh's Twenty Years of Attacks on the RSA Cryptosystem - "+ \
"http://crypto.stanford.edu/~dabo/pubs/papers/RSA-survey.pdf\n"
#e_gcd = 2
# TOFIX: add smth like --> while (e_gcd != 1) and (e > 3): as e should be > than 3
#while e_gcd != 1:
# e = random.randint(1, f_n)
# e_gcd = gcd(e, f_n)
e = 65537
print "e =", bcolors.CYAN, e, bcolors.ENDC, bcolors.YELLOW, "(publicExponent)", bcolors.ENDC
print
# 5. Determine d as d ≡ e^1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)).
# http://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm#Modular_inverse
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
gcd, x, y = egcd(a, m)
if gcd != 1:
return None # modular inverse does not exist
else:
return x % m
print "5. Determining d as d ≡ e^1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)) ..."
d = modinv(e, f_n)
print "d =", bcolors.RED, d, bcolors.ENDC, bcolors.YELLOW, "(privateExponent)", bcolors.ENDC
print
#
# Chinese Remainder Theorem (CRT)
##
print "6. Chinese Remainder Theorem (CRT) starts here"
# exponent1
# exponent2
dP = modinv(e,p-1)
dQ = modinv(e,q-1)
# OR can be calculated this way
# dP = d % (p-1)
# dQ = d % (q-1)
# coefficient
coeff = modinv(q,p)
print "dP = e^-1 mod (p-1) =", bcolors.CYAN, e, bcolors.ENDC, "^-1 mod", \
bcolors.DRED, p-1, bcolors.ENDC, "=", bcolors.RED, dP, bcolors.ENDC, \
bcolors.YELLOW, "(exponent1)", bcolors.ENDC
print "dQ = e^-1 mod (q-1) =", bcolors.CYAN, e, bcolors.ENDC, "^-1 mod", \
bcolors.DRED, q-1, bcolors.ENDC, "=", bcolors.RED, dQ, bcolors.ENDC, \
bcolors.YELLOW, "(exponent2)", bcolors.ENDC
print "coeff = q^-1 mod p = ", bcolors.DRED, q, bcolors.ENDC, "^-1 mod", \
bcolors.DRED, p, bcolors.ENDC, "=", bcolors.RED, coeff, bcolors.ENDC, \
bcolors.YELLOW, "(coefficient)", bcolors.ENDC
print
print "Public key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, \
"and the public (or encryption) exponent e =", bcolors.CYAN, e, \
bcolors.ENDC
print
print "Private key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, \
"and the private (or decryption) exponent d =", bcolors.RED, d, \
bcolors.ENDC, "and it must be kept secret"
print bcolors.DRED+"p"+bcolors.ENDC+","+bcolors.DRED+" q"+bcolors.ENDC+","+ \
bcolors.DRED+" φ(n) "+bcolors.ENDC+"and Chinese Remainder Theorem "+ \
"exponents "+bcolors.DRED+"dP"+bcolors.ENDC+", "+bcolors.DRED+"dQ"+ \
bcolors.ENDC+" with "+bcolors.DRED+"coefficient"+bcolors.ENDC+ \
" must also be kept secret because they can be used to calculate "+ \
bcolors.RED+"d"+bcolors.ENDC+"."
print
# -----------------------------------------------------------------------------
# Encrypting: c = m^e (mod n)
# -----------------------------------------------------------------------------
print "To encrypt message m: c = m^e (mod n)"
#mstr = "hi"
cstr = ""
mstr = raw_input("Enter your message m: ")
for m in [elem.encode("hex") for elem in mstr]:
print ":: encrypting ", bcolors.YELLOW, '"'+chr(int(m, 16))+'"', \
int(m, 16), bcolors.ENDC, " >>>", bcolors.YELLOW, int(m, 16), \
bcolors.ENDC, "^", bcolors.CYAN, e, bcolors.ENDC, \
"( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>> ",
c = ( int(m, 16) ** e ) % n
print bcolors.PURPLE, c, bcolors.ENDC
cstr += str(c)
cstr += ","
cstr = cstr[:-1]
print "Your encrypted message m is now a ciphertext c =", bcolors.YELLOW, cstr, bcolors.ENDC
print
# -----------------------------------------------------------------------------
# Decrypting: m = c^d (mod n)
# -----------------------------------------------------------------------------
#print "To decrypt ciphertext c: m = c^d (mod n)"
#mstr = ""
#for c in cstr.split(","):
# print ":: decrypting ", bcolors.PURPLE, c, bcolors.ENDC, " >>>", \
# bcolors.PURPLE, int(c), "^", bcolors.ENDC, bcolors.RED, \
# d, bcolors.ENDC, "( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>>",
# m = ( int(c) ** d ) % n
# print bcolors.YELLOW, m, '"'+chr(m)+'"', bcolors.ENDC
# mstr += chr(m)
print "To decrypt ciphertext "+bcolors.PURPLE+"c"+bcolors.ENDC+" we apply Chinese Remainder Theorem:"
print " m1 = (c ** dP) % p"
print " m2 = (c ** dQ) % q"
print " h = coeff * (m1 - m2) % p"
print " m = m2 + h*q"
print
mstr = ""
for c in cstr.split(","):
print ":: decrypting ", bcolors.PURPLE, c, bcolors.ENDC, " >>> "
m1 = ( int(c) ** dP ) % p
m2 = ( int(c) ** dQ ) % q
h = coeff * (m1 - m2) % p
m = m2 + h*q
print "\t\t\t\tm1 = (", c, " ^ ", dP, ") mod ", p, "=", m1
print "\t\t\t\tm2 = (", c, " ^ ", dQ, ") mod ", q, "=", m2
print "\t\t\t\th =", coeff, "* (", m1, "-", m2, ") mod", p, "=", h
print "\t\t\t\tm =", m2, "+", h, "*", q, "=", m
print "\t\t\t\t"+bcolors.YELLOW, m, '"'+chr(m)+'"', bcolors.ENDC
mstr += chr(m)
print
print "Decrypted ciphertext is now m =", bcolors.YELLOW, mstr, bcolors.ENDC
print
Loading…
Cancel
Save