mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-11-30 03:18:20 +00:00
300 lines
7.4 KiB
Python
300 lines
7.4 KiB
Python
# ed25519.py - Optimized version of the reference implementation of Ed25519
|
|
# downloaded from https://github.com/pyca/ed25519
|
|
#
|
|
# Written in 2011? by Daniel J. Bernstein <djb@cr.yp.to>
|
|
# 2013 by Donald Stufft <donald@stufft.io>
|
|
# 2013 by Alex Gaynor <alex.gaynor@gmail.com>
|
|
# 2013 by Greg Price <price@mit.edu>
|
|
#
|
|
# To the extent possible under law, the author(s) have dedicated all copyright
|
|
# and related and neighboring rights to this software to the public domain
|
|
# worldwide. This software is distributed without any warranty.
|
|
#
|
|
# You should have received a copy of the CC0 Public Domain Dedication along
|
|
# with this software. If not, see
|
|
# <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|
|
|
"""
|
|
NB: This code is not safe for use with secret keys or secret data.
|
|
The only safe use of this code is for verifying signatures on public messages.
|
|
|
|
Functions for computing the public key of a secret key and for signing
|
|
a message are included, namely publickey_unsafe and signature_unsafe,
|
|
for testing purposes only.
|
|
|
|
The root of the problem is that Python's long-integer arithmetic is
|
|
not designed for use in cryptography. Specifically, it may take more
|
|
or less time to execute an operation depending on the values of the
|
|
inputs, and its memory access patterns may also depend on the inputs.
|
|
This opens it to timing and cache side-channel attacks which can
|
|
disclose data to an attacker. We rely on Python's long-integer
|
|
arithmetic, so we cannot handle secrets without risking their disclosure.
|
|
"""
|
|
|
|
import hashlib
|
|
from typing import List, NewType, Tuple
|
|
|
|
Point = NewType("Point", Tuple[int, int, int, int])
|
|
|
|
|
|
__version__ = "1.0.dev1"
|
|
|
|
|
|
b = 256
|
|
q = 2 ** 255 - 19
|
|
l = 2 ** 252 + 27742317777372353535851937790883648493
|
|
|
|
COORD_MASK = ~(1 + 2 + 4 + (1 << b - 1))
|
|
COORD_HIGH_BIT = 1 << b - 2
|
|
|
|
|
|
def H(m: bytes) -> bytes:
|
|
return hashlib.sha512(m).digest()
|
|
|
|
|
|
def pow2(x: int, p: int) -> int:
|
|
"""== pow(x, 2**p, q)"""
|
|
while p > 0:
|
|
x = x * x % q
|
|
p -= 1
|
|
return x
|
|
|
|
|
|
def inv(z: int) -> int:
|
|
"""$= z^{-1} mod q$, for z != 0"""
|
|
# Adapted from curve25519_athlon.c in djb's Curve25519.
|
|
z2 = z * z % q # 2
|
|
z9 = pow2(z2, 2) * z % q # 9
|
|
z11 = z9 * z2 % q # 11
|
|
z2_5_0 = (z11 * z11) % q * z9 % q # 31 == 2^5 - 2^0
|
|
z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % q # 2^10 - 2^0
|
|
z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % q # ...
|
|
z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % q
|
|
z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % q
|
|
z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % q
|
|
z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % q
|
|
z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % q # 2^250 - 2^0
|
|
return pow2(z2_250_0, 5) * z11 % q # 2^255 - 2^5 + 11 = q - 2
|
|
|
|
|
|
d = -121665 * inv(121666) % q
|
|
I = pow(2, (q - 1) // 4, q)
|
|
|
|
|
|
def xrecover(y: int) -> int:
|
|
xx = (y * y - 1) * inv(d * y * y + 1)
|
|
x = pow(xx, (q + 3) // 8, q)
|
|
|
|
if (x * x - xx) % q != 0:
|
|
x = (x * I) % q
|
|
|
|
if x % 2 != 0:
|
|
x = q - x
|
|
|
|
return x
|
|
|
|
|
|
By = 4 * inv(5)
|
|
Bx = xrecover(By)
|
|
B = Point((Bx % q, By % q, 1, (Bx * By) % q))
|
|
ident = Point((0, 1, 1, 0))
|
|
|
|
|
|
def edwards_add(P: Point, Q: Point) -> Point:
|
|
# This is formula sequence 'addition-add-2008-hwcd-3' from
|
|
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
|
(x1, y1, z1, t1) = P
|
|
(x2, y2, z2, t2) = Q
|
|
|
|
a = (y1 - x1) * (y2 - x2) % q
|
|
b = (y1 + x1) * (y2 + x2) % q
|
|
c = t1 * 2 * d * t2 % q
|
|
dd = z1 * 2 * z2 % q
|
|
e = b - a
|
|
f = dd - c
|
|
g = dd + c
|
|
h = b + a
|
|
x3 = e * f
|
|
y3 = g * h
|
|
t3 = e * h
|
|
z3 = f * g
|
|
|
|
return Point((x3 % q, y3 % q, z3 % q, t3 % q))
|
|
|
|
|
|
def edwards_double(P: Point) -> Point:
|
|
# This is formula sequence 'dbl-2008-hwcd' from
|
|
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
|
(x1, y1, z1, _) = P
|
|
|
|
a = x1 * x1 % q
|
|
b = y1 * y1 % q
|
|
c = 2 * z1 * z1 % q
|
|
# dd = -a
|
|
e = ((x1 + y1) * (x1 + y1) - a - b) % q
|
|
g = -a + b # dd + b
|
|
f = g - c
|
|
h = -a - b # dd - b
|
|
x3 = e * f
|
|
y3 = g * h
|
|
t3 = e * h
|
|
z3 = f * g
|
|
|
|
return Point((x3 % q, y3 % q, z3 % q, t3 % q))
|
|
|
|
|
|
def scalarmult(P: Point, e: int) -> Point:
|
|
if e == 0:
|
|
return ident
|
|
Q = scalarmult(P, e // 2)
|
|
Q = edwards_double(Q)
|
|
if e & 1:
|
|
Q = edwards_add(Q, P)
|
|
return Q
|
|
|
|
|
|
# Bpow[i] == scalarmult(B, 2**i)
|
|
Bpow = [] # type: List[Point]
|
|
|
|
|
|
def make_Bpow() -> None:
|
|
P = B
|
|
for _ in range(253):
|
|
Bpow.append(P)
|
|
P = edwards_double(P)
|
|
|
|
|
|
make_Bpow()
|
|
|
|
|
|
def scalarmult_B(e: int) -> Point:
|
|
"""
|
|
Implements scalarmult(B, e) more efficiently.
|
|
"""
|
|
# scalarmult(B, l) is the identity
|
|
e = e % l
|
|
P = ident
|
|
for i in range(253):
|
|
if e & 1:
|
|
P = edwards_add(P, Bpow[i])
|
|
e = e // 2
|
|
assert e == 0, e
|
|
return P
|
|
|
|
|
|
def encodeint(y: int) -> bytes:
|
|
return y.to_bytes(b // 8, "little")
|
|
|
|
|
|
def encodepoint(P: Point) -> bytes:
|
|
(x, y, z, _) = P
|
|
zi = inv(z)
|
|
x = (x * zi) % q
|
|
y = (y * zi) % q
|
|
|
|
xbit = (x & 1) << (b - 1)
|
|
y_result = y & ~xbit # clear x bit
|
|
y_result |= xbit # set corret x bit value
|
|
return encodeint(y_result)
|
|
|
|
|
|
def decodeint(s: bytes) -> int:
|
|
return int.from_bytes(s, "little")
|
|
|
|
|
|
def decodepoint(s: bytes) -> Point:
|
|
y = decodeint(s) & ~(1 << b - 1) # y without the highest bit
|
|
x = xrecover(y)
|
|
if x & 1 != bit(s, b - 1):
|
|
x = q - x
|
|
P = Point((x, y, 1, (x * y) % q))
|
|
if not isoncurve(P):
|
|
raise ValueError("decoding point that is not on curve")
|
|
return P
|
|
|
|
|
|
def decodecoord(s: bytes) -> int:
|
|
a = decodeint(s[: b // 8])
|
|
# clear mask bits
|
|
a &= COORD_MASK
|
|
# set high bit
|
|
a |= COORD_HIGH_BIT
|
|
return a
|
|
|
|
|
|
def bit(h: bytes, i: int) -> int:
|
|
return (h[i // 8] >> (i % 8)) & 1
|
|
|
|
|
|
def publickey_unsafe(sk: bytes) -> bytes:
|
|
"""
|
|
Not safe to use with secret keys or secret data.
|
|
|
|
See module docstring. This function should be used for testing only.
|
|
"""
|
|
h = H(sk)
|
|
a = decodecoord(h)
|
|
A = scalarmult_B(a)
|
|
return encodepoint(A)
|
|
|
|
|
|
def Hint(m: bytes) -> int:
|
|
return decodeint(H(m))
|
|
|
|
|
|
def signature_unsafe(m: bytes, sk: bytes, pk: bytes) -> bytes:
|
|
"""
|
|
Not safe to use with secret keys or secret data.
|
|
|
|
See module docstring. This function should be used for testing only.
|
|
"""
|
|
h = H(sk)
|
|
a = decodecoord(h)
|
|
r = Hint(h[b // 8 : b // 4] + m)
|
|
R = scalarmult_B(r)
|
|
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
|
|
return encodepoint(R) + encodeint(S)
|
|
|
|
|
|
def isoncurve(P: Point) -> bool:
|
|
(x, y, z, t) = P
|
|
return (
|
|
z % q != 0
|
|
and x * y % q == z * t % q
|
|
and (y * y - x * x - z * z - d * t * t) % q == 0
|
|
)
|
|
|
|
|
|
class SignatureMismatch(Exception):
|
|
pass
|
|
|
|
|
|
def checkvalid(s: bytes, m: bytes, pk: bytes) -> None:
|
|
"""
|
|
Not safe to use when any argument is secret.
|
|
|
|
See module docstring. This function should be used only for
|
|
verifying public signatures of public messages.
|
|
"""
|
|
if len(s) != b // 4:
|
|
raise ValueError("signature length is wrong")
|
|
|
|
if len(pk) != b // 8:
|
|
raise ValueError("public-key length is wrong")
|
|
|
|
R = decodepoint(s[: b // 8])
|
|
A = decodepoint(pk)
|
|
S = decodeint(s[b // 8 : b // 4])
|
|
h = Hint(encodepoint(R) + pk + m)
|
|
|
|
(x1, y1, z1, _) = P = scalarmult_B(S)
|
|
(x2, y2, z2, _) = Q = edwards_add(R, scalarmult(A, h))
|
|
|
|
if (
|
|
not isoncurve(P)
|
|
or not isoncurve(Q)
|
|
or (x1 * z2 - x2 * z1) % q != 0
|
|
or (y1 * z2 - y2 * z1) % q != 0
|
|
):
|
|
raise SignatureMismatch("signature does not pass verification")
|