1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-22 14:28:07 +00:00
trezor-firmware/crypto/fuzzer/fuzzer.c

1035 lines
28 KiB
C

/**
* Copyright (c) 2020-2021 Christian Reitter
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// includes for potential target functions
// based on test_check.c
#include "address.h"
#include "aes/aes.h"
#include "base32.h"
#include "base58.h"
#include "bignum.h"
#include "bip32.h"
#include "bip39.h"
#include "blake256.h"
#include "blake2b.h"
#include "blake2s.h"
#include "chacha_drbg.h"
#include "curves.h"
#include "ecdsa.h"
#include "ed25519-donna/ed25519-donna.h"
#include "ed25519-donna/ed25519-keccak.h"
#include "ed25519-donna/ed25519.h"
#include "hmac_drbg.h"
#include "memzero.h"
#include "monero/monero.h"
#include "nem.h"
#include "nist256p1.h"
#include "pbkdf2.h"
#include "rand.h"
#include "rc4.h"
#include "rfc6979.h"
#include "schnorr.h"
#include "script.h"
#include "secp256k1.h"
#include "sha2.h"
#include "sha3.h"
#include "shamir.h"
#include "slip39.h"
#include "slip39_wordlist.h"
/* fuzzer input data handling */
const uint8_t *fuzzer_ptr;
size_t fuzzer_length;
const uint8_t *fuzzer_input(size_t len) {
if (fuzzer_length < len) {
fuzzer_length = 0;
return NULL;
}
const uint8_t *result = fuzzer_ptr;
fuzzer_length -= len;
fuzzer_ptr += len;
return result;
}
/* fuzzer state handling */
void fuzzer_reset_state(void) {
// reset the PRNGs to make individual fuzzer runs deterministic
srand(0);
random_reseed(0);
}
/* individual fuzzer harness functions */
int fuzz_bn_format(void) {
bignum256 target_bignum;
// we need some amount of data, bail if the input is too short
if (fuzzer_length < sizeof(target_bignum)) {
return 0;
}
char buf[512] = {0};
int r;
// mutate the struct contents
memcpy(&target_bignum, fuzzer_ptr, sizeof(target_bignum));
fuzzer_input(sizeof(target_bignum));
uint8_t prefixlen = 0;
if (fuzzer_length < 1) {
return 0;
}
memcpy(&prefixlen, fuzzer_input(1), 1);
char prefix[prefixlen];
memset(&prefix, 0, prefixlen);
if (prefixlen > 0 && prefixlen <= 128 && prefixlen <= fuzzer_length) {
memcpy(&prefix, fuzzer_input(prefixlen), prefixlen);
// force null termination
prefix[prefixlen - 1] = 0;
} else {
return 0;
}
// TODO fuzzer idea: allow prefix=NULL
uint8_t suffixlen = 0;
if (fuzzer_length < 1) {
return 0;
}
memcpy(&suffixlen, fuzzer_input(1), 1);
char suffix[suffixlen];
memset(&suffix, 0, suffixlen);
if (suffixlen > 0 && suffixlen <= 128 && suffixlen <= fuzzer_length) {
memcpy(&suffix, fuzzer_input(suffixlen), suffixlen);
// force null termination
suffix[suffixlen - 1] = 0;
} else {
return 0;
}
// TODO fuzzer idea: allow suffix=NULL
uint32_t decimals = 0;
int32_t exponent = 0;
bool trailing = false;
if (fuzzer_length >= 9) {
memcpy(&decimals, fuzzer_input(4), 4);
memcpy(&exponent, fuzzer_input(4), 4);
trailing = (fuzzer_input(1)[0] & 1);
} else {
return 0;
}
r = bn_format(&target_bignum, prefix, suffix, decimals, exponent, trailing,
buf, sizeof(buf));
return 0;
}
// arbitrarily chosen maximum size
#define BASE32_DECODE_MAX_INPUT_LEN 512
int fuzz_base32_decode(void) {
if (fuzzer_length < 2 || fuzzer_length > BASE32_DECODE_MAX_INPUT_LEN) {
return 0;
}
char in_buffer[BASE32_DECODE_MAX_INPUT_LEN] = {0};
uint8_t out_buffer[BASE32_DECODE_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(&in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
// null-terminate input buffer to prevent issues with strlen()
in_buffer[BASE32_DECODE_MAX_INPUT_LEN - 1] = 0;
size_t inlen = strlen(in_buffer);
base32_decode(in_buffer, inlen, out_buffer, outlen, BASE32_ALPHABET_RFC4648);
return 0;
}
// arbitrarily chosen maximum size
#define BASE32_ENCODE_MAX_INPUT_LEN 512
int fuzz_base32_encode(void) {
if (fuzzer_length > BASE32_ENCODE_MAX_INPUT_LEN) {
return 0;
}
uint8_t in_buffer[BASE32_ENCODE_MAX_INPUT_LEN] = {0};
char out_buffer[BASE32_ENCODE_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(&in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
base32_encode(in_buffer, raw_inlen, out_buffer, outlen,
BASE32_ALPHABET_RFC4648);
return 0;
}
// internal limit is 128, try some extra bytes
#define BASE58_ENCODE_MAX_INPUT_LEN 140
int fuzz_base58_encode_check(void) {
if (fuzzer_length > BASE58_ENCODE_MAX_INPUT_LEN) {
return 0;
}
uint8_t in_buffer[BASE58_ENCODE_MAX_INPUT_LEN] = {0};
char out_buffer[BASE58_ENCODE_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(&in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
// run multiple hasher variants for the same input
base58_encode_check(in_buffer, raw_inlen, HASHER_SHA2D, out_buffer, outlen);
base58_encode_check(in_buffer, raw_inlen, HASHER_BLAKED, out_buffer, outlen);
base58_encode_check(in_buffer, raw_inlen, HASHER_GROESTLD_TRUNC, out_buffer,
outlen);
base58_encode_check(in_buffer, raw_inlen, HASHER_SHA3K, out_buffer, outlen);
return 0;
}
// internal limit is 128, try some extra bytes
#define BASE58_DECODE_MAX_INPUT_LEN 140
int fuzz_base58_decode_check(void) {
if (fuzzer_length > BASE58_DECODE_MAX_INPUT_LEN) {
return 0;
}
// with null terminator
uint8_t in_buffer[BASE58_DECODE_MAX_INPUT_LEN + 1] = {0};
uint8_t out_buffer[BASE58_DECODE_MAX_INPUT_LEN] = {0};
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(&in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
// run multiple hasher variants for the same input
base58_decode_check((const char *)in_buffer, HASHER_SHA2D, out_buffer,
MAX_ADDR_RAW_SIZE);
base58_decode_check((const char *)in_buffer, HASHER_BLAKED, out_buffer,
MAX_ADDR_RAW_SIZE);
base58_decode_check((const char *)in_buffer, HASHER_GROESTLD_TRUNC,
out_buffer, MAX_ADDR_RAW_SIZE);
base58_decode_check((const char *)in_buffer, HASHER_SHA3K, out_buffer,
MAX_ADDR_RAW_SIZE);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN 512
int fuzz_xmr_base58_addr_decode_check(void) {
if (fuzzer_length > XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN) {
return 0;
}
char in_buffer[XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN] = {0};
char out_buffer[XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
// mutate in_buffer
size_t raw_inlen = fuzzer_length;
memcpy(&in_buffer, fuzzer_ptr, raw_inlen);
fuzzer_input(raw_inlen);
uint64_t tag;
xmr_base58_addr_decode_check(in_buffer, raw_inlen, &tag, out_buffer, outlen);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN 512
int fuzz_xmr_base58_addr_encode_check(void) {
uint64_t tag_in;
size_t tag_size = sizeof(tag_in);
if (fuzzer_length < tag_size ||
fuzzer_length > XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN) {
return 0;
}
uint8_t in_buffer[XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN] = {0};
char out_buffer[XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
// mutate tag_in
memcpy(&tag_in, fuzzer_ptr, tag_size);
fuzzer_input(tag_size);
// mutate in_buffer
memcpy(&in_buffer, fuzzer_ptr, fuzzer_length);
size_t raw_inlen = fuzzer_length;
fuzzer_input(raw_inlen);
xmr_base58_addr_encode_check(tag_in, in_buffer, raw_inlen, out_buffer,
outlen);
return 0;
}
// arbitrarily chosen maximum size
#define XMR_SERIALIZE_VARINT_MAX_INPUT_LEN 128
int fuzz_xmr_serialize_varint(void) {
uint64_t varint_in;
size_t varint_in_size = sizeof(varint_in);
if (fuzzer_length < varint_in_size ||
fuzzer_length > XMR_SERIALIZE_VARINT_MAX_INPUT_LEN) {
return 0;
}
uint8_t in_buffer[XMR_SERIALIZE_VARINT_MAX_INPUT_LEN] = {0};
uint8_t out_buffer[XMR_SERIALIZE_VARINT_MAX_INPUT_LEN] = {0};
size_t outlen = sizeof(out_buffer);
uint64_t varint_out = 0;
// mutate varint_in
memcpy(&varint_in, fuzzer_ptr, varint_in_size);
fuzzer_input(varint_in_size);
// mutate in_buffer
memcpy(&in_buffer, fuzzer_ptr, fuzzer_length);
size_t raw_inlen = fuzzer_length;
fuzzer_input(raw_inlen);
// call the actual xmr functions
xmr_size_varint(varint_in);
xmr_write_varint(out_buffer, outlen, varint_in);
xmr_read_varint(in_buffer, raw_inlen, &varint_out);
return 0;
}
// arbitrarily chosen maximum size
#define NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN 128
int fuzz_nem_validate_address(void) {
if (fuzzer_length < (1 + 1) ||
fuzzer_length > NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN) {
return 0;
}
char in_buffer[NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN] = {0};
uint8_t network = *fuzzer_ptr;
fuzzer_input(1);
// mutate the buffer with the remaining fuzzer input data
memcpy(&in_buffer, fuzzer_ptr, fuzzer_length);
size_t raw_inlen = fuzzer_length;
fuzzer_input(raw_inlen);
// TODO potential bug: is it clearly specified that the address has to be null
// terminated?
in_buffer[NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN - 1] = 0;
nem_validate_address(in_buffer, network);
return 0;
}
int fuzz_nem_get_address(void) {
unsigned char ed25519_public_key[32] = {0};
uint32_t network = 0;
if (fuzzer_length != (sizeof(ed25519_public_key) + sizeof(network))) {
return 0;
}
char address[NEM_ADDRESS_SIZE + 1] = {0};
memcpy(ed25519_public_key, fuzzer_input(32), 32);
memcpy(&network, fuzzer_input(4), 4);
nem_get_address(ed25519_public_key, network, address);
// TODO check return address for memory info leakage?
return 0;
}
int fuzz_xmr_get_subaddress_secret_key(void) {
bignum256modm m = {0};
uint32_t major = 0;
uint32_t minor = 0;
if (fuzzer_length != (sizeof(bignum256modm) + 2 * sizeof(uint32_t))) {
return 0;
}
bignum256modm output = {0};
memcpy(m, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&major, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
memcpy(&minor, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
xmr_get_subaddress_secret_key(output, major, minor, m);
return 0;
}
int fuzz_xmr_derive_private_key(void) {
bignum256modm base = {0};
ge25519 deriv = {0};
uint32_t idx = 0;
if (fuzzer_length !=
(sizeof(bignum256modm) + sizeof(ge25519) + sizeof(uint32_t))) {
return 0;
}
memcpy(base, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm));
memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
bignum256modm output = {0};
xmr_derive_private_key(output, &deriv, idx, base);
return 0;
}
int fuzz_xmr_derive_public_key(void) {
ge25519 base = {0};
ge25519 deriv = {0};
uint32_t idx = 0;
if (fuzzer_length != (2 * sizeof(ge25519) + sizeof(uint32_t))) {
return 0;
}
memcpy(&base, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519));
memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t));
ge25519 output = {0};
xmr_derive_public_key(&output, &deriv, idx, &base);
return 0;
}
#define SHAMIR_MAX_SHARE_COUNT 16
#define SHAMIR_MAX_DATA_LEN (SHAMIR_MAX_SHARE_COUNT * SHAMIR_MAX_LEN)
int fuzz_shamir_interpolate(void) {
if (fuzzer_length != (2 * sizeof(uint8_t) + SHAMIR_MAX_SHARE_COUNT +
SHAMIR_MAX_DATA_LEN + sizeof(size_t))) {
return 0;
}
uint8_t result[SHAMIR_MAX_LEN] = {0};
uint8_t result_index = 0;
uint8_t share_indices[SHAMIR_MAX_SHARE_COUNT] = {0};
uint8_t share_values_content[SHAMIR_MAX_SHARE_COUNT][SHAMIR_MAX_LEN] = {0};
const uint8_t *share_values[SHAMIR_MAX_SHARE_COUNT] = {0};
uint8_t share_count = 0;
size_t len = 0;
for (size_t i = 0; i < SHAMIR_MAX_SHARE_COUNT; i++) {
share_values[i] = share_values_content[i];
}
memcpy(&result_index, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t));
memcpy(&share_indices, fuzzer_input(SHAMIR_MAX_SHARE_COUNT),
SHAMIR_MAX_SHARE_COUNT);
memcpy(&share_values_content, fuzzer_input(SHAMIR_MAX_DATA_LEN),
SHAMIR_MAX_DATA_LEN);
memcpy(&share_count, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t));
// note: this is platform specific via byte length of size_t
memcpy(&len, fuzzer_input(sizeof(size_t)), sizeof(size_t));
// mirror a check that the real code does
if (share_count < 1 || share_count > SHAMIR_MAX_SHARE_COUNT) {
return 0;
}
// (len > SHAMIR_MAX_LEN) is handled in the target function
shamir_interpolate(result, result_index, share_indices, share_values,
share_count, len);
return 0;
}
int fuzz_ecdsa_sign_digest(void) {
uint8_t curve_decider = 0;
uint8_t sig[64] = {0};
uint8_t priv_key[32] = {0};
uint8_t digest[32] = {0};
if (fuzzer_length < 1 + sizeof(sig) + sizeof(priv_key) + sizeof(digest)) {
return 0;
}
const ecdsa_curve *curve;
uint8_t pby = 0;
memcpy(&curve_decider, fuzzer_input(1), 1);
memcpy(&sig, fuzzer_input(sizeof(sig)), sizeof(sig));
memcpy(&priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key));
memcpy(&digest, fuzzer_input(sizeof(digest)), sizeof(digest));
// pick one of the standard curves
if ((curve_decider & 0x1) == 1) {
curve = &secp256k1;
} else {
curve = &nist256p1;
}
// TODO optionally set a function for is_canonical()
int res = ecdsa_sign_digest(curve, priv_key, digest, sig, &pby, NULL);
// successful signing
if (res == 0) {
uint8_t pub_key[33] = {0};
ecdsa_get_public_key33(curve, priv_key, pub_key);
res = ecdsa_verify_digest(curve, pub_key, sig, digest);
if (res != 0) {
// verification did not succeed
// case: all zero pubkey value
uint8_t pub_key_zero[33] =
"\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
// case: all zero digest value
uint8_t digest_zero[32] =
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
if (memcmp(&pub_key, &pub_key_zero, sizeof(pub_key_zero)) == 0 ||
memcmp(&digest, &digest_zero, sizeof(digest_zero)) == 0) {
return 0;
}
// handle as crash
exit(1);
}
}
return 0;
}
int fuzz_ecdsa_verify_digest(void) {
uint8_t curve_decider = 0;
uint8_t hash[32] = {0};
uint8_t sig[64] = {0};
uint8_t pub_key[65] = {0};
if (fuzzer_length < 1 + sizeof(hash) + sizeof(sig) + sizeof(pub_key)) {
return 0;
}
memcpy(&curve_decider, fuzzer_input(1), 1);
memcpy(&hash, fuzzer_input(sizeof(hash)), sizeof(hash));
memcpy(&sig, fuzzer_input(sizeof(sig)), sizeof(sig));
memcpy(&pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key));
const ecdsa_curve *curve;
// pick one of the standard curves
if ((curve_decider & 0x1) == 1) {
curve = &secp256k1;
} else {
curve = &nist256p1;
}
int res = ecdsa_verify_digest(curve, (const uint8_t *)&pub_key,
(const uint8_t *)&sig, (const uint8_t *)&hash);
if (res == 0) {
// See if the fuzzer ever manages to get find a correct verification
// intentionally trigger a crash to make this case observable
// TODO this is not an actual problem, remove in the future
exit(1);
}
return 0;
}
int fuzz_word_index(void) {
#define MAX_WORD_LENGTH 12
// TODO exact match?
if (fuzzer_length < MAX_WORD_LENGTH) {
return 0;
}
char word[MAX_WORD_LENGTH + 1] = {0};
memcpy(&word, fuzzer_ptr, MAX_WORD_LENGTH);
size_t word_length = strlen(word);
uint16_t index = 0;
word_index(&index, (const char *)&word, word_length);
return 0;
}
int fuzz_slip39_word_completion_mask(void) {
if (fuzzer_length != 2) {
return 0;
}
uint16_t sequence = (fuzzer_ptr[0] << 8) + fuzzer_ptr[1];
fuzzer_input(2);
slip39_word_completion_mask(sequence);
return 0;
}
int fuzz_mnemonic_to_bits(void) {
// length chosen somewhat arbitrarily
#define MAX_MNEMONIC_LENGTH 256
if (fuzzer_length < MAX_MNEMONIC_LENGTH) {
return 0;
}
char mnemonic[MAX_MNEMONIC_LENGTH + 1] = {0};
memcpy(&mnemonic, fuzzer_ptr, MAX_MNEMONIC_LENGTH);
uint8_t mnemonic_bits[32 + 1] = {0};
mnemonic_to_bits((const char *)&mnemonic, mnemonic_bits);
return 0;
}
int fuzz_aes(void) {
if (fuzzer_length < 1 + 16 + 16 + 32) {
return 0;
}
aes_encrypt_ctx ctxe;
aes_decrypt_ctx ctxd;
uint8_t ibuf[16] = {0};
uint8_t obuf[16] = {0};
uint8_t iv[16] = {0};
uint8_t cbuf[16] = {0};
const uint8_t *keylength_decider = fuzzer_input(1);
// note: the unit test uses the fixed 32 byte key
// 603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4
uint8_t keybuf[32] = {0};
memcpy(&keybuf, fuzzer_input(32), 32);
#ifdef AES_VAR
// try 128, 192, 256 bit key lengths
size_t keylength = 32;
switch (keylength_decider[0] & 0x3) {
case 0:
// invalid length
keylength = 1;
break;
case 1:
keylength = 16;
break;
case 2:
keylength = 24;
break;
case 3:
keylength = 32;
break;
}
if (aes_encrypt_key((const unsigned char *)&keybuf, keylength, &ctxe) ||
aes_decrypt_key((const unsigned char *)&keybuf, keylength, &ctxd)) {
// initialization problems, stop processing
// we expect this to happen with the invalid key length
return 0;
}
#else
// use a 256 bit key length
(void)keylength_decider;
aes_encrypt_key256((const unsigned char *)&keybuf, &ctxe);
aes_decrypt_key256((const unsigned char *)&keybuf, &ctxd);
#endif
memcpy(ibuf, fuzzer_input(16), 16);
memcpy(iv, fuzzer_input(16), 16);
aes_ecb_encrypt(ibuf, obuf, 16, &ctxe);
aes_ecb_decrypt(ibuf, obuf, 16, &ctxd);
aes_cbc_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_cbc_decrypt(ibuf, obuf, 16, iv, &ctxd);
aes_cfb_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_cfb_decrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ofb_encrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ofb_decrypt(ibuf, obuf, 16, iv, &ctxe);
aes_ctr_encrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe);
aes_ctr_decrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe);
return 0;
}
int fuzz_b58gph_encode_decode(void) {
// note: encode and decode functions have an internal limit of 128
#define BASE58_GPH_MAX_INPUT_LEN 130
if (fuzzer_length < 1 + 1 + BASE58_GPH_MAX_INPUT_LEN) {
return 0;
}
// use a flexible output buffer target size
uint8_t chosen_outlen = 0;
memcpy(&chosen_outlen, fuzzer_input(1), 1);
if (chosen_outlen > BASE58_GPH_MAX_INPUT_LEN) {
return 0;
}
// use a flexible input buffer target size
uint8_t chosen_inlen = 0;
memcpy(&chosen_inlen, fuzzer_input(1), 1);
if (chosen_inlen > BASE58_GPH_MAX_INPUT_LEN) {
return 0;
}
// TODO switch to malloc()'ed buffers for better out of bounds access
// detection?
uint8_t encode_in_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0};
// with null termination
char decode_in_buffer[BASE58_GPH_MAX_INPUT_LEN + 1] = {0};
char out_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0};
memcpy(&encode_in_buffer, fuzzer_input(chosen_inlen), chosen_inlen);
memcpy(&decode_in_buffer, &encode_in_buffer, chosen_inlen);
int ret = 0;
ret = base58gph_encode_check(encode_in_buffer, chosen_inlen, out_buffer,
chosen_outlen);
if (ret != 0) {
// successful encode, try decode
uint8_t dummy_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0};
ret = base58gph_decode_check(out_buffer, (uint8_t *)&dummy_buffer,
chosen_outlen);
if (ret == 0) {
// mark as exception
// TODO POTENTIAL BUG - followup
// exit(1);
}
}
// do a second operation with the same input, without relationship to the
// previously computed output
base58gph_decode_check(decode_in_buffer, (uint8_t *)&out_buffer,
chosen_outlen);
return 0;
}
#define SCHNORR_VERIFY_PUBKEY_DATA_LENGTH 33
#define SCHNORR_VERIFY_PRIVKEY_DATA_LENGTH 32
int fuzz_schnorr_verify_digest(void) {
if (fuzzer_length < SHA256_DIGEST_LENGTH + SCHNORR_VERIFY_PUBKEY_DATA_LENGTH +
SCHNORR_SIG_LENGTH) {
return 0;
}
// TODO optionally try nist256p1 ?
const ecdsa_curve *curve = &secp256k1;
uint8_t digest[SHA256_DIGEST_LENGTH] = {0};
uint8_t pub_key[SCHNORR_VERIFY_PUBKEY_DATA_LENGTH] = {0};
uint8_t signature[SCHNORR_SIG_LENGTH] = {0};
memcpy(&digest, fuzzer_input(SHA256_DIGEST_LENGTH), SHA256_DIGEST_LENGTH);
memcpy(&pub_key, fuzzer_input(SCHNORR_VERIFY_PUBKEY_DATA_LENGTH),
SCHNORR_VERIFY_PUBKEY_DATA_LENGTH);
memcpy(&signature, fuzzer_input(SCHNORR_SIG_LENGTH), SCHNORR_SIG_LENGTH);
// TODO this limitation is a bug workaround
if (pub_key[0] != 0x04) {
int ret = schnorr_verify_digest(curve, pub_key, digest, signature);
if (ret == 0) {
// assuming that the fuzzer can't puzzle together validly signed inputs,
// exit with a forced crash if a successful verification is observed
exit(1);
}
}
return 0;
}
int fuzz_schnorr_sign_digest(void) {
if (fuzzer_length <
1 + SHA256_DIGEST_LENGTH + SCHNORR_VERIFY_PRIVKEY_DATA_LENGTH) {
return 0;
}
const ecdsa_curve *curve;
uint8_t digest[SHA256_DIGEST_LENGTH] = {0};
uint8_t priv_key[SCHNORR_VERIFY_PRIVKEY_DATA_LENGTH] = {0};
uint8_t signature[SCHNORR_SIG_LENGTH] = {0};
int ret = 0;
uint8_t curve_decider = 0;
memcpy(&curve_decider, fuzzer_input(1), 1);
if ((curve_decider & 0x1) == 1) {
curve = &secp256k1;
} else {
curve = &nist256p1;
}
memcpy(&digest, fuzzer_input(SHA256_DIGEST_LENGTH), SHA256_DIGEST_LENGTH);
memcpy(&priv_key, fuzzer_input(SCHNORR_VERIFY_PRIVKEY_DATA_LENGTH),
SCHNORR_VERIFY_PRIVKEY_DATA_LENGTH);
ret = schnorr_sign_digest(curve, priv_key, digest, signature);
if (ret == 0) {
// signing was successful, check if the verification works
// compute matching pubkey
uint8_t pub_key[33] = {0};
ecdsa_get_public_key33(curve, priv_key, pub_key);
if (schnorr_verify_digest(curve, pub_key, digest, signature) != 0) {
// ignore known case
uint8_t pub_key_null[33] =
"\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
if (memcmp(&pub_key, &pub_key_null, 33) == 0) {
return 0;
}
// something is wrong, mark as crash
exit(1);
}
}
return 0;
}
int fuzz_chacha_drbg(void) {
#define CHACHA_DRBG_ENTROPY_LENGTH 32
#define CHACHA_DRBG_RESEED_LENGTH 32
#define CHACHA_DRBG_NONCE_LENGTH 16
#define CHACHA_DRBG_RESULT_LENGTH 16
if (fuzzer_length < CHACHA_DRBG_ENTROPY_LENGTH + CHACHA_DRBG_RESEED_LENGTH +
CHACHA_DRBG_NONCE_LENGTH) {
return 0;
}
uint8_t entropy[CHACHA_DRBG_ENTROPY_LENGTH] = {0};
uint8_t reseed[CHACHA_DRBG_RESEED_LENGTH] = {0};
uint8_t nonce_bytes[CHACHA_DRBG_NONCE_LENGTH] = {0};
uint8_t result[CHACHA_DRBG_RESULT_LENGTH] = {0};
CHACHA_DRBG_CTX ctx;
// TODO improvement idea: switch to variable input sizes
memcpy(&entropy, fuzzer_input(CHACHA_DRBG_ENTROPY_LENGTH),
CHACHA_DRBG_ENTROPY_LENGTH);
memcpy(&reseed, fuzzer_input(CHACHA_DRBG_RESEED_LENGTH),
CHACHA_DRBG_RESEED_LENGTH);
memcpy(&nonce_bytes, fuzzer_input(CHACHA_DRBG_NONCE_LENGTH),
CHACHA_DRBG_NONCE_LENGTH);
chacha_drbg_init(&ctx, entropy, sizeof(entropy), nonce_bytes,
sizeof(nonce_bytes));
chacha_drbg_reseed(&ctx, reseed, sizeof(reseed), NULL, 0);
chacha_drbg_generate(&ctx, result, sizeof(result));
return 0;
}
int fuzz_ed25519_sign_verify(void) {
ed25519_secret_key secret_key;
ed25519_signature signature;
ed25519_public_key public_key;
// length chosen arbitrarily
uint8_t message[32] = {0};
int ret = 0;
if (fuzzer_length <
sizeof(secret_key) + sizeof(signature) + sizeof(message)) {
return 0;
}
memcpy(&secret_key, fuzzer_input(sizeof(secret_key)), sizeof(secret_key));
memcpy(&signature, fuzzer_input(sizeof(signature)), sizeof(signature));
memcpy(&message, fuzzer_input(sizeof(message)), sizeof(message));
ed25519_publickey(secret_key, public_key);
// sign message, this should always succeed
ed25519_sign(message, sizeof(message), secret_key, public_key, signature);
// verify message, we expect this to work
ret = ed25519_sign_open(message, sizeof(message), public_key, signature);
// TODO are there other error values?
if (ret == -1) {
// mark as exception
exit(1);
}
return 0;
}
// TODO more XMR functions
// extern void xmr_hash_to_ec(ge25519 *P, const void *data, size_t length);
// this function directly calls
// hasher_Raw(HASHER_SHA3K, data, length, hash)
// is this interesting at all?
// extern void xmr_fast_hash(uint8_t *hash, const void *data, size_t length);
// TODO target idea: re-create openssl_check() from test_openssl.c
// to do differential fuzzing against OpenSSL functions
#define META_HEADER_SIZE 3
// main fuzzer entry
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) {
// reject input that is too short
if (size < META_HEADER_SIZE) {
return 0;
}
fuzzer_reset_state();
uint8_t target_decision = data[0];
// TODO use once necessary
// uint8_t subdecision = data[1];
// note: data[2] is reserved for future use
// assign the fuzzer payload data for the target functions
fuzzer_ptr = data + META_HEADER_SIZE;
fuzzer_length = size - META_HEADER_SIZE;
// if active: reject all other inputs that are not the selected target
// this is helpful for directing the fuzzing focus on a specific case
#ifdef FUZZER_EXCLUSIVE_TARGET
if (target_decision != FUZZER_EXCLUSIVE_TARGET) {
return 0;
}
#endif
// TODO reorder and regroup target functions
switch (target_decision) {
case 0:
fuzz_bn_format();
break;
case 1:
fuzz_base32_decode();
break;
case 2:
fuzz_base32_encode();
break;
case 3:
fuzz_base58_encode_check();
break;
case 4:
fuzz_base58_decode_check();
break;
case 5:
fuzz_xmr_base58_addr_decode_check();
break;
case 6:
fuzz_xmr_base58_addr_encode_check();
break;
case 7:
fuzz_xmr_serialize_varint();
break;
case 8:
fuzz_nem_validate_address();
break;
case 9:
fuzz_nem_get_address();
break;
case 10:
fuzz_xmr_get_subaddress_secret_key();
break;
case 11:
fuzz_xmr_derive_private_key();
break;
case 12:
fuzz_xmr_derive_public_key();
break;
case 13:
fuzz_shamir_interpolate();
break;
case 14:
#ifdef FUZZ_ALLOW_SLOW
// slow through expensive bignum operations
fuzz_ecdsa_verify_digest();
#endif
break;
case 15:
fuzz_word_index();
break;
case 16:
fuzz_slip39_word_completion_mask();
break;
case 17:
fuzz_mnemonic_to_bits();
break;
case 18:
#ifdef FUZZ_ALLOW_SLOW
fuzz_aes();
#endif
break;
case 19:
fuzz_b58gph_encode_decode();
break;
case 20:
fuzz_schnorr_verify_digest();
break;
case 21:
fuzz_schnorr_sign_digest();
break;
case 22:
fuzz_chacha_drbg();
break;
case 23:
#ifdef FUZZ_ALLOW_SLOW
// slow through expensive bignum operations
fuzz_ecdsa_sign_digest();
#endif
break;
case 24:
fuzz_ed25519_sign_verify();
break;
default:
// do nothing
break;
}
return 0;
}