1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-05 23:10:12 +00:00
trezor-firmware/crypto/bip32.c

942 lines
28 KiB
C

/**
* Copyright (c) 2013-2016 Tomas Dzetkulic
* Copyright (c) 2013-2016 Pavol Rusnak
* Copyright (c) 2015-2016 Jochen Hoenicke
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include "address.h"
#include "aes/aes.h"
#include "base58.h"
#include "bignum.h"
#include "bip32.h"
#include "curves.h"
#include "ecdsa.h"
#include "ed25519-donna/ed25519-sha3.h"
#include "ed25519-donna/ed25519.h"
#include "hmac.h"
#include "nist256p1.h"
#include "secp256k1.h"
#include "sha2.h"
#include "sha3.h"
#if USE_KECCAK
#include "ed25519-donna/ed25519-keccak.h"
#endif
#if USE_NEM
#include "nem.h"
#endif
#if USE_CARDANO
#include "pbkdf2.h"
#endif
#include "memzero.h"
#define CARDANO_MAX_NODE_DEPTH 1048576
const curve_info ed25519_info = {
.bip32_name = "ed25519 seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
const curve_info ed25519_cardano_info = {
.bip32_name = "ed25519 cardano seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
const curve_info ed25519_sha3_info = {
.bip32_name = "ed25519-sha3 seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
#if USE_KECCAK
const curve_info ed25519_keccak_info = {
.bip32_name = "ed25519-keccak seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
#endif
const curve_info curve25519_info = {
.bip32_name = "curve25519 seed",
.params = NULL,
.hasher_base58 = HASHER_SHA2D,
.hasher_sign = HASHER_SHA2D,
.hasher_pubkey = HASHER_SHA2_RIPEMD,
.hasher_script = HASHER_SHA2,
};
int hdnode_from_xpub(uint32_t depth, uint32_t child_num,
const uint8_t *chain_code, const uint8_t *public_key,
const char *curve, HDNode *out) {
const curve_info *info = get_curve_by_name(curve);
if (info == 0) {
return 0;
}
if (public_key[0] != 0x02 && public_key[0] != 0x03) { // invalid pubkey
return 0;
}
out->curve = info;
out->depth = depth;
out->child_num = child_num;
memcpy(out->chain_code, chain_code, 32);
memzero(out->private_key, 32);
memzero(out->private_key_extension, 32);
memcpy(out->public_key, public_key, 33);
return 1;
}
int hdnode_from_xprv(uint32_t depth, uint32_t child_num,
const uint8_t *chain_code, const uint8_t *private_key,
const char *curve, HDNode *out) {
bool failed = false;
const curve_info *info = get_curve_by_name(curve);
if (info == 0) {
failed = true;
} else if (info->params) {
bignum256 a = {0};
bn_read_be(private_key, &a);
if (bn_is_zero(&a)) { // == 0
failed = true;
} else {
if (!bn_is_less(&a, &info->params->order)) { // >= order
failed = true;
}
}
memzero(&a, sizeof(a));
}
if (failed) {
return 0;
}
out->curve = info;
out->depth = depth;
out->child_num = child_num;
memcpy(out->chain_code, chain_code, 32);
memcpy(out->private_key, private_key, 32);
memzero(out->public_key, sizeof(out->public_key));
memzero(out->private_key_extension, sizeof(out->private_key_extension));
return 1;
}
int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve,
HDNode *out) {
static CONFIDENTIAL uint8_t I[32 + 32];
memzero(out, sizeof(HDNode));
out->depth = 0;
out->child_num = 0;
out->curve = get_curve_by_name(curve);
if (out->curve == 0) {
return 0;
}
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name,
strlen(out->curve->bip32_name));
hmac_sha512_Update(&ctx, seed, seed_len);
hmac_sha512_Final(&ctx, I);
if (out->curve->params) {
bignum256 a = {0};
while (true) {
bn_read_be(I, &a);
if (!bn_is_zero(&a) // != 0
&& bn_is_less(&a, &out->curve->params->order)) { // < order
break;
}
hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name,
strlen(out->curve->bip32_name));
hmac_sha512_Update(&ctx, I, sizeof(I));
hmac_sha512_Final(&ctx, I);
}
memzero(&a, sizeof(a));
}
memcpy(out->private_key, I, 32);
memcpy(out->chain_code, I + 32, 32);
memzero(out->public_key, sizeof(out->public_key));
memzero(I, sizeof(I));
return 1;
}
uint32_t hdnode_fingerprint(HDNode *node) {
uint8_t digest[32] = {0};
uint32_t fingerprint = 0;
hdnode_fill_public_key(node);
hasher_Raw(node->curve->hasher_pubkey, node->public_key, 33, digest);
fingerprint = ((uint32_t)digest[0] << 24) + (digest[1] << 16) +
(digest[2] << 8) + digest[3];
memzero(digest, sizeof(digest));
return fingerprint;
}
int hdnode_private_ckd(HDNode *inout, uint32_t i) {
static CONFIDENTIAL uint8_t data[1 + 32 + 4];
static CONFIDENTIAL uint8_t I[32 + 32];
static CONFIDENTIAL bignum256 a, b;
if (i & 0x80000000) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
} else { // public derivation
if (!inout->curve->params) {
return 0;
}
hdnode_fill_public_key(inout);
memcpy(data, inout->public_key, 33);
}
write_be(data + 33, i);
bn_read_be(inout->private_key, &a);
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, sizeof(data));
hmac_sha512_Final(&ctx, I);
if (inout->curve->params) {
while (true) {
bool failed = false;
bn_read_be(I, &b);
if (!bn_is_less(&b, &inout->curve->params->order)) { // >= order
failed = true;
} else {
bn_add(&b, &a);
bn_mod(&b, &inout->curve->params->order);
if (bn_is_zero(&b)) {
failed = true;
}
}
if (!failed) {
bn_write_be(&b, inout->private_key);
break;
}
data[0] = 1;
memcpy(data + 1, I + 32, 32);
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, sizeof(data));
hmac_sha512_Final(&ctx, I);
}
} else {
memcpy(inout->private_key, I, 32);
}
memcpy(inout->chain_code, I + 32, 32);
inout->depth++;
inout->child_num = i;
memzero(inout->public_key, sizeof(inout->public_key));
// making sure to wipe our memory
memzero(&a, sizeof(a));
memzero(&b, sizeof(b));
memzero(I, sizeof(I));
memzero(data, sizeof(data));
return 1;
}
#if USE_CARDANO
static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) {
uint8_t prev_acc = 0;
for (int i = 0; i < bytes; i++) {
dst[i] = (src[i] << 3) + (prev_acc & 0x7);
prev_acc = src[i] >> 5;
}
dst[bytes] = src[bytes - 1] >> 5;
}
static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2,
uint8_t *dst) {
uint16_t r = 0;
for (int i = 0; i < 32; i++) {
r = r + (uint16_t)src1[i] + (uint16_t)src2[i];
dst[i] = r & 0xff;
r >>= 8;
}
}
int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) {
if (inout->depth >= CARDANO_MAX_NODE_DEPTH) {
return 0;
}
// checks for hardened/non-hardened derivation, keysize 32 means we are
// dealing with public key and thus non-h, keysize 64 is for private key
int keysize = 32;
if (index & 0x80000000) {
keysize = 64;
}
static CONFIDENTIAL uint8_t data[1 + 64 + 4];
static CONFIDENTIAL uint8_t z[32 + 32];
static CONFIDENTIAL uint8_t priv_key[64];
static CONFIDENTIAL uint8_t res_key[64];
write_le(data + keysize + 1, index);
memcpy(priv_key, inout->private_key, 32);
memcpy(priv_key + 32, inout->private_key_extension, 32);
if (keysize == 64) { // private derivation
data[0] = 0;
memcpy(data + 1, inout->private_key, 32);
memcpy(data + 1 + 32, inout->private_key_extension, 32);
} else { // public derivation
hdnode_fill_public_key(inout);
data[0] = 2;
memcpy(data + 1, inout->public_key + 1, 32);
}
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
static CONFIDENTIAL uint8_t zl8[32];
memzero(zl8, 32);
/* get 8 * Zl */
scalar_multiply8(z, 28, zl8);
/* Kl = 8*Zl + parent(K)l */
scalar_add_256bits(zl8, priv_key, res_key);
/* Kr = Zr + parent(K)r */
scalar_add_256bits(z + 32, priv_key + 32, res_key + 32);
memcpy(inout->private_key, res_key, 32);
memcpy(inout->private_key_extension, res_key + 32, 32);
if (keysize == 64) {
data[0] = 1;
} else {
data[0] = 3;
}
hmac_sha512_Init(&ctx, inout->chain_code, 32);
hmac_sha512_Update(&ctx, data, 1 + keysize + 4);
hmac_sha512_Final(&ctx, z);
memcpy(inout->chain_code, z + 32, 32);
inout->depth++;
inout->child_num = index;
memzero(inout->public_key, sizeof(inout->public_key));
// making sure to wipe our memory
memzero(z, sizeof(z));
memzero(data, sizeof(data));
memzero(priv_key, sizeof(priv_key));
memzero(res_key, sizeof(res_key));
return 1;
}
static int hdnode_from_secret_cardano(const uint8_t *k,
const uint8_t *chain_code, HDNode *out) {
memzero(out, sizeof(HDNode));
out->depth = 0;
out->child_num = 0;
out->curve = &ed25519_cardano_info;
memcpy(out->private_key, k, 32);
memcpy(out->private_key_extension, k + 32, 32);
memcpy(out->chain_code, chain_code, 32);
out->private_key[0] &= 0xf8;
out->private_key[31] &= 0x1f;
out->private_key[31] |= 0x40;
out->public_key[0] = 0;
hdnode_fill_public_key(out);
return 1;
}
// Derives the root Cardano HDNode from a master secret, aka seed, as defined in
// SLIP-0023.
int hdnode_from_seed_cardano(const uint8_t *seed, int seed_len, HDNode *out) {
static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL uint8_t k[SHA512_DIGEST_LENGTH];
static CONFIDENTIAL HMAC_SHA512_CTX ctx;
hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME,
strlen(ED25519_CARDANO_NAME));
hmac_sha512_Update(&ctx, seed, seed_len);
hmac_sha512_Final(&ctx, I);
sha512_Raw(I, 32, k);
int ret = hdnode_from_secret_cardano(k, I + 32, out);
memzero(I, sizeof(I));
memzero(k, sizeof(k));
memzero(&ctx, sizeof(ctx));
return ret;
}
// Derives the root Cardano HDNode from a passphrase and the entropy encoded in
// a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation
// scheme.
int hdnode_from_entropy_cardano_icarus(const uint8_t *pass, int pass_len,
const uint8_t *entropy, int entropy_len,
HDNode *out) {
static CONFIDENTIAL uint8_t secret[96];
pbkdf2_hmac_sha512(pass, pass_len, entropy, entropy_len, 4096, secret, 96);
int ret = hdnode_from_secret_cardano(secret, secret + 64, out);
memzero(secret, sizeof(secret));
return ret;
}
#endif
int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent,
const uint8_t *parent_chain_code, uint32_t i,
curve_point *child, uint8_t *child_chain_code) {
uint8_t data[(1 + 32) + 4] = {0};
uint8_t I[32 + 32] = {0};
bignum256 c = {0};
if (i & 0x80000000) { // private derivation
return 0;
}
data[0] = 0x02 | (parent->y.val[0] & 0x01);
bn_write_be(&parent->x, data + 1);
write_be(data + 33, i);
while (true) {
hmac_sha512(parent_chain_code, 32, data, sizeof(data), I);
bn_read_be(I, &c);
if (bn_is_less(&c, &curve->order)) { // < order
scalar_multiply(curve, &c, child); // b = c * G
point_add(curve, parent, child); // b = a + b
if (!point_is_infinity(child)) {
if (child_chain_code) {
memcpy(child_chain_code, I + 32, 32);
}
// Wipe all stack data.
memzero(data, sizeof(data));
memzero(I, sizeof(I));
memzero(&c, sizeof(c));
return 1;
}
}
data[0] = 1;
memcpy(data + 1, I + 32, 32);
}
}
int hdnode_public_ckd(HDNode *inout, uint32_t i) {
curve_point parent = {0}, child = {0};
if (!ecdsa_read_pubkey(inout->curve->params, inout->public_key, &parent)) {
return 0;
}
if (!hdnode_public_ckd_cp(inout->curve->params, &parent, inout->chain_code, i,
&child, inout->chain_code)) {
return 0;
}
memzero(inout->private_key, 32);
inout->depth++;
inout->child_num = i;
inout->public_key[0] = 0x02 | (child.y.val[0] & 0x01);
bn_write_be(&child.x, inout->public_key + 1);
// Wipe all stack data.
memzero(&parent, sizeof(parent));
memzero(&child, sizeof(child));
return 1;
}
void hdnode_public_ckd_address_optimized(const curve_point *pub,
const uint8_t *chain_code, uint32_t i,
uint32_t version,
HasherType hasher_pubkey,
HasherType hasher_base58, char *addr,
int addrsize, int addrformat) {
uint8_t child_pubkey[33] = {0};
curve_point b = {0};
hdnode_public_ckd_cp(&secp256k1, pub, chain_code, i, &b, NULL);
child_pubkey[0] = 0x02 | (b.y.val[0] & 0x01);
bn_write_be(&b.x, child_pubkey + 1);
switch (addrformat) {
case 1: // Segwit-in-P2SH
ecdsa_get_address_segwit_p2sh(child_pubkey, version, hasher_pubkey,
hasher_base58, addr, addrsize);
break;
default: // normal address
ecdsa_get_address(child_pubkey, version, hasher_pubkey, hasher_base58,
addr, addrsize);
break;
}
}
#if USE_BIP32_CACHE
static bool private_ckd_cache_root_set = false;
static CONFIDENTIAL HDNode private_ckd_cache_root;
static int private_ckd_cache_index = 0;
static CONFIDENTIAL struct {
bool set;
size_t depth;
uint32_t i[BIP32_CACHE_MAXDEPTH];
HDNode node;
} private_ckd_cache[BIP32_CACHE_SIZE];
int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count,
uint32_t *fingerprint) {
if (i_count == 0) {
// no way how to compute parent fingerprint
return 1;
}
if (i_count == 1) {
if (fingerprint) {
*fingerprint = hdnode_fingerprint(inout);
}
if (hdnode_private_ckd(inout, i[0]) == 0) return 0;
return 1;
}
bool found = false;
// if root is not set or not the same
if (!private_ckd_cache_root_set ||
memcmp(&private_ckd_cache_root, inout, sizeof(HDNode)) != 0) {
// clear the cache
private_ckd_cache_index = 0;
memzero(private_ckd_cache, sizeof(private_ckd_cache));
// setup new root
memcpy(&private_ckd_cache_root, inout, sizeof(HDNode));
private_ckd_cache_root_set = true;
} else {
// try to find parent
int j = 0;
for (j = 0; j < BIP32_CACHE_SIZE; j++) {
if (private_ckd_cache[j].set &&
private_ckd_cache[j].depth == i_count - 1 &&
memcmp(private_ckd_cache[j].i, i, (i_count - 1) * sizeof(uint32_t)) ==
0 &&
private_ckd_cache[j].node.curve == inout->curve) {
memcpy(inout, &(private_ckd_cache[j].node), sizeof(HDNode));
found = true;
break;
}
}
}
// else derive parent
if (!found) {
size_t k = 0;
for (k = 0; k < i_count - 1; k++) {
if (hdnode_private_ckd(inout, i[k]) == 0) return 0;
}
// and save it
memzero(&(private_ckd_cache[private_ckd_cache_index]),
sizeof(private_ckd_cache[private_ckd_cache_index]));
private_ckd_cache[private_ckd_cache_index].set = true;
private_ckd_cache[private_ckd_cache_index].depth = i_count - 1;
memcpy(private_ckd_cache[private_ckd_cache_index].i, i,
(i_count - 1) * sizeof(uint32_t));
memcpy(&(private_ckd_cache[private_ckd_cache_index].node), inout,
sizeof(HDNode));
private_ckd_cache_index = (private_ckd_cache_index + 1) % BIP32_CACHE_SIZE;
}
if (fingerprint) {
*fingerprint = hdnode_fingerprint(inout);
}
if (hdnode_private_ckd(inout, i[i_count - 1]) == 0) return 0;
return 1;
}
#endif
void hdnode_get_address_raw(HDNode *node, uint32_t version, uint8_t *addr_raw) {
hdnode_fill_public_key(node);
ecdsa_get_address_raw(node->public_key, version, node->curve->hasher_pubkey,
addr_raw);
}
void hdnode_get_address(HDNode *node, uint32_t version, char *addr,
int addrsize) {
hdnode_fill_public_key(node);
ecdsa_get_address(node->public_key, version, node->curve->hasher_pubkey,
node->curve->hasher_base58, addr, addrsize);
}
void hdnode_fill_public_key(HDNode *node) {
if (node->public_key[0] != 0) return;
#if USE_BIP32_25519_CURVES
if (node->curve->params) {
ecdsa_get_public_key33(node->curve->params, node->private_key,
node->public_key);
} else {
node->public_key[0] = 1;
if (node->curve == &ed25519_info) {
ed25519_publickey(node->private_key, node->public_key + 1);
} else if (node->curve == &ed25519_sha3_info) {
ed25519_publickey_sha3(node->private_key, node->public_key + 1);
#if USE_KECCAK
} else if (node->curve == &ed25519_keccak_info) {
ed25519_publickey_keccak(node->private_key, node->public_key + 1);
#endif
} else if (node->curve == &curve25519_info) {
curve25519_scalarmult_basepoint(node->public_key + 1, node->private_key);
#if USE_CARDANO
} else if (node->curve == &ed25519_cardano_info) {
ed25519_publickey_ext(node->private_key, node->private_key_extension,
node->public_key + 1);
#endif
}
}
#else
ecdsa_get_public_key33(node->curve->params, node->private_key,
node->public_key);
#endif
}
#if USE_ETHEREUM
int hdnode_get_ethereum_pubkeyhash(const HDNode *node, uint8_t *pubkeyhash) {
uint8_t buf[65] = {0};
SHA3_CTX ctx = {0};
/* get uncompressed public key */
ecdsa_get_public_key65(node->curve->params, node->private_key, buf);
/* compute sha3 of x and y coordinate without 04 prefix */
sha3_256_Init(&ctx);
sha3_Update(&ctx, buf + 1, 64);
keccak_Final(&ctx, buf);
/* result are the least significant 160 bits */
memcpy(pubkeyhash, buf + 12, 20);
return 1;
}
#endif
#if USE_NEM
int hdnode_get_nem_address(HDNode *node, uint8_t version, char *address) {
if (node->curve != &ed25519_keccak_info) {
return 0;
}
hdnode_fill_public_key(node);
return nem_get_address(&node->public_key[1], version, address);
}
int hdnode_get_nem_shared_key(const HDNode *node,
const ed25519_public_key peer_public_key,
const uint8_t *salt, ed25519_public_key mul,
uint8_t *shared_key) {
if (node->curve != &ed25519_keccak_info) {
return 0;
}
// sizeof(ed25519_public_key) == SHA3_256_DIGEST_LENGTH
if (mul == NULL) mul = shared_key;
if (ed25519_scalarmult_keccak(mul, node->private_key, peer_public_key)) {
return 0;
}
for (size_t i = 0; i < 32; i++) {
shared_key[i] = mul[i] ^ salt[i];
}
keccak_256(shared_key, 32, shared_key);
return 1;
}
int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key,
const uint8_t *iv_immut, const uint8_t *salt,
const uint8_t *payload, size_t size, uint8_t *buffer) {
uint8_t last_block[AES_BLOCK_SIZE] = {0};
uint8_t remainder = size % AES_BLOCK_SIZE;
// Round down to last whole block
size -= remainder;
// Copy old last block
memcpy(last_block, &payload[size], remainder);
// Pad new last block with number of missing bytes
memset(&last_block[remainder], AES_BLOCK_SIZE - remainder,
AES_BLOCK_SIZE - remainder);
// the IV gets mutated, so we make a copy not to touch the original
uint8_t iv[AES_BLOCK_SIZE] = {0};
memcpy(iv, iv_immut, AES_BLOCK_SIZE);
uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};
if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
return 0;
}
aes_encrypt_ctx ctx = {0};
int ret = aes_encrypt_key256(shared_key, &ctx);
memzero(shared_key, sizeof(shared_key));
if (ret != EXIT_SUCCESS) {
return 0;
}
if (aes_cbc_encrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) {
return 0;
}
if (aes_cbc_encrypt(last_block, &buffer[size], sizeof(last_block), iv,
&ctx) != EXIT_SUCCESS) {
return 0;
}
return 1;
}
int hdnode_nem_decrypt(const HDNode *node, const ed25519_public_key public_key,
uint8_t *iv, const uint8_t *salt, const uint8_t *payload,
size_t size, uint8_t *buffer) {
uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};
if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
return 0;
}
aes_decrypt_ctx ctx = {0};
int ret = aes_decrypt_key256(shared_key, &ctx);
memzero(shared_key, sizeof(shared_key));
if (ret != EXIT_SUCCESS) {
return 0;
}
if (aes_cbc_decrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) {
return 0;
}
return 1;
}
#endif
// msg is a data to be signed
// msg_len is the message length
int hdnode_sign(HDNode *node, const uint8_t *msg, uint32_t msg_len,
HasherType hasher_sign, uint8_t *sig, uint8_t *pby,
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
if (node->curve->params) {
return ecdsa_sign(node->curve->params, hasher_sign, node->private_key, msg,
msg_len, sig, pby, is_canonical);
} else if (node->curve == &curve25519_info) {
return 1; // signatures are not supported
} else {
if (node->curve == &ed25519_info) {
hdnode_fill_public_key(node);
ed25519_sign(msg, msg_len, node->private_key, node->public_key + 1, sig);
} else if (node->curve == &ed25519_sha3_info) {
hdnode_fill_public_key(node);
ed25519_sign_sha3(msg, msg_len, node->private_key, node->public_key + 1,
sig);
#if USE_KECCAK
} else if (node->curve == &ed25519_keccak_info) {
hdnode_fill_public_key(node);
ed25519_sign_keccak(msg, msg_len, node->private_key, node->public_key + 1,
sig);
#endif
} else {
return 1; // unknown or unsupported curve
}
return 0;
}
}
int hdnode_sign_digest(HDNode *node, const uint8_t *digest, uint8_t *sig,
uint8_t *pby,
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
if (node->curve->params) {
return ecdsa_sign_digest(node->curve->params, node->private_key, digest,
sig, pby, is_canonical);
} else if (node->curve == &curve25519_info) {
return 1; // signatures are not supported
} else {
return hdnode_sign(node, digest, 32, 0, sig, pby, is_canonical);
}
}
int hdnode_get_shared_key(const HDNode *node, const uint8_t *peer_public_key,
uint8_t *session_key, int *result_size) {
// Use elliptic curve Diffie-Helman to compute shared session key
if (node->curve->params) {
if (ecdh_multiply(node->curve->params, node->private_key, peer_public_key,
session_key) != 0) {
return 1;
}
*result_size = 65;
return 0;
} else if (node->curve == &curve25519_info) {
session_key[0] = 0x04;
if (peer_public_key[0] != 0x40) {
return 1; // Curve25519 public key should start with 0x40 byte.
}
curve25519_scalarmult(session_key + 1, node->private_key,
peer_public_key + 1);
*result_size = 33;
return 0;
} else {
*result_size = 0;
return 1; // ECDH is not supported
}
}
static int hdnode_serialize(const HDNode *node, uint32_t fingerprint,
uint32_t version, bool use_private, char *str,
int strsize) {
uint8_t node_data[78] = {0};
write_be(node_data, version);
node_data[4] = node->depth;
write_be(node_data + 5, fingerprint);
write_be(node_data + 9, node->child_num);
memcpy(node_data + 13, node->chain_code, 32);
if (use_private) {
node_data[45] = 0;
memcpy(node_data + 46, node->private_key, 32);
} else {
memcpy(node_data + 45, node->public_key, 33);
}
int ret = base58_encode_check(node_data, sizeof(node_data),
node->curve->hasher_base58, str, strsize);
memzero(node_data, sizeof(node_data));
return ret;
}
int hdnode_serialize_public(const HDNode *node, uint32_t fingerprint,
uint32_t version, char *str, int strsize) {
return hdnode_serialize(node, fingerprint, version, false, str, strsize);
}
int hdnode_serialize_private(const HDNode *node, uint32_t fingerprint,
uint32_t version, char *str, int strsize) {
return hdnode_serialize(node, fingerprint, version, true, str, strsize);
}
// check for validity of curve point in case of public data not performed
static int hdnode_deserialize(const char *str, uint32_t version,
bool use_private, const char *curve, HDNode *node,
uint32_t *fingerprint) {
uint8_t node_data[78] = {0};
memzero(node, sizeof(HDNode));
node->curve = get_curve_by_name(curve);
if (base58_decode_check(str, node->curve->hasher_base58, node_data,
sizeof(node_data)) != sizeof(node_data)) {
return -1;
}
uint32_t ver = read_be(node_data);
if (ver != version) {
return -3; // invalid version
}
if (use_private) {
// invalid data
if (node_data[45]) {
return -2;
}
memcpy(node->private_key, node_data + 46, 32);
memzero(node->public_key, sizeof(node->public_key));
} else {
memzero(node->private_key, sizeof(node->private_key));
memcpy(node->public_key, node_data + 45, 33);
}
node->depth = node_data[4];
if (fingerprint) {
*fingerprint = read_be(node_data + 5);
}
node->child_num = read_be(node_data + 9);
memcpy(node->chain_code, node_data + 13, 32);
return 0;
}
int hdnode_deserialize_public(const char *str, uint32_t version,
const char *curve, HDNode *node,
uint32_t *fingerprint) {
return hdnode_deserialize(str, version, false, curve, node, fingerprint);
}
int hdnode_deserialize_private(const char *str, uint32_t version,
const char *curve, HDNode *node,
uint32_t *fingerprint) {
return hdnode_deserialize(str, version, true, curve, node, fingerprint);
}
const curve_info *get_curve_by_name(const char *curve_name) {
if (curve_name == 0) {
return 0;
}
if (strcmp(curve_name, SECP256K1_NAME) == 0) {
return &secp256k1_info;
}
if (strcmp(curve_name, SECP256K1_DECRED_NAME) == 0) {
return &secp256k1_decred_info;
}
if (strcmp(curve_name, SECP256K1_GROESTL_NAME) == 0) {
return &secp256k1_groestl_info;
}
if (strcmp(curve_name, SECP256K1_SMART_NAME) == 0) {
return &secp256k1_smart_info;
}
if (strcmp(curve_name, NIST256P1_NAME) == 0) {
return &nist256p1_info;
}
if (strcmp(curve_name, ED25519_NAME) == 0) {
return &ed25519_info;
}
if (strcmp(curve_name, ED25519_CARDANO_NAME) == 0) {
return &ed25519_cardano_info;
}
if (strcmp(curve_name, ED25519_SHA3_NAME) == 0) {
return &ed25519_sha3_info;
}
#if USE_KECCAK
if (strcmp(curve_name, ED25519_KECCAK_NAME) == 0) {
return &ed25519_keccak_info;
}
#endif
if (strcmp(curve_name, CURVE25519_NAME) == 0) {
return &curve25519_info;
}
return 0;
}