1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-02 03:20:59 +00:00
trezor-firmware/firmware/crypto.c
2016-04-27 18:10:21 +02:00

369 lines
11 KiB
C

/*
* This file is part of the TREZOR project.
*
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "crypto.h"
#include "sha2.h"
#include "pbkdf2.h"
#include "aes.h"
#include "hmac.h"
#include "bip32.h"
#include "layout.h"
#include "curves.h"
#include "secp256k1.h"
uint32_t ser_length(uint32_t len, uint8_t *out)
{
if (len < 253) {
out[0] = len & 0xFF;
return 1;
}
if (len < 0x10000) {
out[0] = 253;
out[1] = len & 0xFF;
out[2] = (len >> 8) & 0xFF;
return 3;
}
out[0] = 254;
out[1] = len & 0xFF;
out[2] = (len >> 8) & 0xFF;
out[3] = (len >> 16) & 0xFF;
out[4] = (len >> 24) & 0xFF;
return 5;
}
uint32_t ser_length_hash(SHA256_CTX *ctx, uint32_t len)
{
if (len < 253) {
sha256_Update(ctx, (const uint8_t *)&len, 1);
return 1;
}
if (len < 0x10000) {
uint8_t d = 253;
sha256_Update(ctx, &d, 1);
sha256_Update(ctx, (const uint8_t *)&len, 2);
return 3;
}
uint8_t d = 254;
sha256_Update(ctx, &d, 1);
sha256_Update(ctx, (const uint8_t *)&len, 4);
return 5;
}
uint32_t deser_length(const uint8_t *in, uint32_t *out)
{
if (in[0] < 253) {
*out = in[0];
return 1;
}
if (in[0] == 253) {
*out = in[1] + (in[2] << 8);
return 1 + 2;
}
if (in[0] == 254) {
*out = in[1] + (in[2] << 8) + (in[3] << 16) + (in[4] << 24);
return 1 + 4;
}
*out = 0; // ignore 64 bit
return 1 + 8;
}
int sshMessageSign(const HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature)
{
signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes
return hdnode_sign(node, message, message_len, signature + 1, NULL);
}
int gpgMessageSign(const HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature)
{
// GPG should sign a SHA256 digest of the original message.
if (message_len != 32) {
return 1;
}
signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes
return hdnode_sign_digest(node, message, signature + 1, NULL);
}
int cryptoMessageSign(const HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature)
{
SHA256_CTX ctx;
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
uint8_t varint[5];
uint32_t l = ser_length(message_len, varint);
sha256_Update(&ctx, varint, l);
sha256_Update(&ctx, message, message_len);
uint8_t hash[32];
sha256_Final(&ctx, hash);
sha256_Raw(hash, 32, hash);
uint8_t pby;
int result = hdnode_sign_digest(node, hash, signature + 1, &pby);
if (result == 0) {
signature[0] = 27 + pby + 4;
}
return result;
}
int cryptoMessageVerify(const uint8_t *message, size_t message_len, const uint8_t *address_raw, const uint8_t *signature)
{
SHA256_CTX ctx;
uint8_t pubkey[65], addr_raw[21], hash[32];
// calculate hash
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
uint8_t varint[5];
uint32_t l = ser_length(message_len, varint);
sha256_Update(&ctx, varint, l);
sha256_Update(&ctx, message, message_len);
sha256_Final(&ctx, hash);
sha256_Raw(hash, 32, hash);
uint8_t recid = signature[0] - 27;
if (recid >= 8) {
return 1;
}
bool compressed = (recid >= 4);
recid &= 3;
// check if signature verifies the digest and recover the public key
if (ecdsa_verify_digest_recover(&secp256k1, pubkey, signature + 1, hash, recid) != 0) {
return 3;
}
// convert public key to compressed pubkey if necessary
if (compressed) {
pubkey[0] = 0x02 | (pubkey[64] & 1);
}
// check if the address is correct
ecdsa_get_address_raw(pubkey, address_raw[0], addr_raw);
if (memcmp(addr_raw, address_raw, 21) != 0) {
return 2;
}
return 0;
}
int cryptoMessageEncrypt(curve_point *pubkey, const uint8_t *msg, size_t msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t *payload, size_t *payload_len, uint8_t *hmac, size_t *hmac_len, const uint8_t *privkey, const uint8_t *address_raw)
{
if (privkey && address_raw) { // signing == true
HDNode node;
payload[0] = display_only ? 0x81 : 0x01;
uint32_t l = ser_length(msg_size, payload + 1);
memcpy(payload + 1 + l, msg, msg_size);
memcpy(payload + 1 + l + msg_size, address_raw, 21);
hdnode_from_xprv(0, 0, 0, privkey, privkey, SECP256K1_NAME, &node);
if (cryptoMessageSign(&node, msg, msg_size, payload + 1 + l + msg_size + 21) != 0) {
return 1;
}
*payload_len = 1 + l + msg_size + 21 + 65;
} else {
payload[0] = display_only ? 0x80 : 0x00;
uint32_t l = ser_length(msg_size, payload + 1);
memcpy(payload + 1 + l, msg, msg_size);
*payload_len = 1 + l + msg_size;
}
// generate random nonce
curve_point R;
bignum256 k;
if (generate_k_random(&secp256k1, &k) != 0) {
return 2;
}
// compute k*G
scalar_multiply(&secp256k1, &k, &R);
nonce[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, nonce + 1);
*nonce_len = 33;
// compute shared secret
point_multiply(&secp256k1, &k, pubkey, &R);
uint8_t shared_secret[33];
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, shared_secret + 1);
// generate keying bytes
uint8_t keying_bytes[80];
uint8_t salt[22 + 33 + 4];
memcpy(salt, "Bitcoin Secure Message", 22);
memcpy(salt + 22, nonce, 33);
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80, NULL);
// encrypt payload
aes_encrypt_ctx ctx;
aes_encrypt_key256(keying_bytes, &ctx);
aes_cfb_encrypt(payload, payload, *payload_len, keying_bytes + 64, &ctx);
// compute hmac
uint8_t out[32];
hmac_sha256(keying_bytes + 32, 32, payload, *payload_len, out);
memcpy(hmac, out, 8);
*hmac_len = 8;
return 0;
}
int cryptoMessageDecrypt(curve_point *nonce, uint8_t *payload, size_t payload_len, const uint8_t *hmac, size_t hmac_len, const uint8_t *privkey, uint8_t *msg, size_t *msg_len, bool *display_only, bool *signing, uint8_t *address_raw)
{
if (hmac_len != 8) {
return 1;
}
// compute shared secret
curve_point R;
bignum256 k;
bn_read_be(privkey, &k);
point_multiply(&secp256k1, &k, nonce, &R);
uint8_t shared_secret[33];
shared_secret[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, shared_secret + 1);
// generate keying bytes
uint8_t keying_bytes[80];
uint8_t salt[22 + 33 + 4];
memcpy(salt, "Bitcoin Secure Message", 22);
salt[22] = 0x02 | (nonce->y.val[0] & 0x01);
bn_write_be(&(nonce->x), salt + 23);
pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80, NULL);
// compute hmac
uint8_t out[32];
hmac_sha256(keying_bytes + 32, 32, payload, payload_len, out);
if (memcmp(hmac, out, 8) != 0) {
return 2;
}
// decrypt payload
aes_encrypt_ctx ctx;
aes_encrypt_key256(keying_bytes, &ctx);
aes_cfb_decrypt(payload, payload, payload_len, keying_bytes + 64, &ctx);
// check first byte
if (payload[0] != 0x00 && payload[0] != 0x01 && payload[0] != 0x80 && payload[0] != 0x81) {
return 3;
}
*signing = payload[0] & 0x01;
*display_only = payload[0] & 0x80;
uint32_t l, o;
l = deser_length(payload + 1, &o);
if (*signing) {
if (1 + l + o + 21 + 65 != payload_len) {
return 4;
}
if (cryptoMessageVerify(payload + 1 + l, o, payload + 1 + l + o, payload + 1 + l + o + 21) != 0) {
return 5;
}
memcpy(address_raw, payload + 1 + l + o, 21);
} else {
if (1 + l + o != payload_len) {
return 4;
}
}
memcpy(msg, payload + 1 + l, o);
*msg_len = o;
return 0;
}
uint8_t *cryptoHDNodePathToPubkey(const HDNodePathType *hdnodepath)
{
if (!hdnodepath->node.has_public_key || hdnodepath->node.public_key.size != 33) return 0;
static HDNode node;
if (hdnode_from_xpub(hdnodepath->node.depth, hdnodepath->node.fingerprint, hdnodepath->node.child_num, hdnodepath->node.chain_code.bytes, hdnodepath->node.public_key.bytes, SECP256K1_NAME, &node) == 0) {
return 0;
}
layoutProgressUpdate(true);
uint32_t i;
for (i = 0; i < hdnodepath->address_n_count; i++) {
if (hdnode_public_ckd(&node, hdnodepath->address_n[i]) == 0) {
return 0;
}
layoutProgressUpdate(true);
}
return node.public_key;
}
int cryptoMultisigPubkeyIndex(const MultisigRedeemScriptType *multisig, const uint8_t *pubkey)
{
size_t i;
for (i = 0; i < multisig->pubkeys_count; i++) {
const uint8_t *node_pubkey = cryptoHDNodePathToPubkey(&(multisig->pubkeys[i]));
if (node_pubkey && memcmp(node_pubkey, pubkey, 33) == 0) {
return i;
}
}
return -1;
}
int cryptoMultisigFingerprint(const MultisigRedeemScriptType *multisig, uint8_t *hash)
{
static const HDNodePathType *ptr[15], *swap;
const uint32_t n = multisig->pubkeys_count;
if (n > 15) {
return 0;
}
uint32_t i, j;
// check sanity
if (!multisig->has_m || multisig->m < 1 || multisig->m > 15) return 0;
for (i = 0; i < n; i++) {
ptr[i] = &(multisig->pubkeys[i]);
if (!ptr[i]->node.has_public_key || ptr[i]->node.public_key.size != 33) return 0;
if (ptr[i]->node.chain_code.size != 32) return 0;
}
// minsort according to pubkey
for (i = 0; i < n - 1; i++) {
for (j = n - 1; j > i; j--) {
if (memcmp(ptr[i]->node.public_key.bytes, ptr[j]->node.public_key.bytes, 33) > 0) {
swap = ptr[i];
ptr[i] = ptr[j];
ptr[j] = swap;
}
}
}
// hash sorted nodes
SHA256_CTX ctx;
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)&(multisig->m), sizeof(uint32_t));
for (i = 0; i < n; i++) {
sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.depth), sizeof(uint32_t));
sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.fingerprint), sizeof(uint32_t));
sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.child_num), sizeof(uint32_t));
sha256_Update(&ctx, ptr[i]->node.chain_code.bytes, 32);
sha256_Update(&ctx, ptr[i]->node.public_key.bytes, 33);
}
sha256_Update(&ctx, (const uint8_t *)&n, sizeof(uint32_t));
sha256_Final(&ctx, hash);
layoutProgressUpdate(true);
return 1;
}
int cryptoIdentityFingerprint(const IdentityType *identity, uint8_t *hash)
{
SHA256_CTX ctx;
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)&(identity->index), sizeof(uint32_t));
if (identity->has_proto && identity->proto[0]) {
sha256_Update(&ctx, (const uint8_t *)(identity->proto), strlen(identity->proto));
sha256_Update(&ctx, (const uint8_t *)"://", 3);
}
if (identity->has_user && identity->user[0]) {
sha256_Update(&ctx, (const uint8_t *)(identity->user), strlen(identity->user));
sha256_Update(&ctx, (const uint8_t *)"@", 1);
}
if (identity->has_host && identity->host[0]) {
sha256_Update(&ctx, (const uint8_t *)(identity->host), strlen(identity->host));
}
if (identity->has_port && identity->port[0]) {
sha256_Update(&ctx, (const uint8_t *)":", 1);
sha256_Update(&ctx, (const uint8_t *)(identity->port), strlen(identity->port));
}
if (identity->has_path && identity->path[0]) {
sha256_Update(&ctx, (const uint8_t *)(identity->path), strlen(identity->path));
}
sha256_Final(&ctx, hash);
return 1;
}