1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-26 09:28:13 +00:00
trezor-firmware/ecdsa.c
2013-09-27 15:55:55 +02:00

414 lines
11 KiB
C

/**
* Copyright (c) 2013 Tomas Dzetkulic
* Copyright (c) 2013 Pavol Rusnak
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "bignum.h"
#include "rand.h"
#include "sha2.h"
#include "ripemd160.h"
#include "hmac.h"
#include "ecdsa.h"
// cp2 = cp1 + cp2
void point_add(const curve_point *cp1, curve_point *cp2)
{
int i;
uint32_t temp;
bignum256 lambda, inv, xr, yr;
bn_substract(&(cp2->x), &(cp1->x), &inv);
bn_inverse(&inv, &prime256k1);
bn_substract(&(cp2->y), &(cp1->y), &lambda);
bn_multiply(&inv, &lambda, &prime256k1);
memcpy(&xr, &lambda, sizeof(bignum256));
bn_multiply(&xr, &xr, &prime256k1);
temp = 0;
for (i = 0; i < 9; i++) {
temp += xr.val[i] + 3u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i];
xr.val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
bn_fast_mod(&xr, &prime256k1);
bn_substract(&(cp1->x), &xr, &yr);
// no need to fast_mod here
// bn_fast_mod(&yr);
bn_multiply(&lambda, &yr, &prime256k1);
bn_substract(&yr, &(cp1->y), &yr);
bn_fast_mod(&yr, &prime256k1);
memcpy(&(cp2->x), &xr, sizeof(bignum256));
memcpy(&(cp2->y), &yr, sizeof(bignum256));
}
// cp = cp + cp
void point_double(curve_point *cp)
{
int i;
uint32_t temp;
bignum256 lambda, inverse_y, xr, yr;
memcpy(&inverse_y, &(cp->y), sizeof(bignum256));
bn_inverse(&inverse_y, &prime256k1);
memcpy(&lambda, &three_over_two256k1, sizeof(bignum256));
bn_multiply(&inverse_y, &lambda, &prime256k1);
bn_multiply(&(cp->x), &lambda, &prime256k1);
bn_multiply(&(cp->x), &lambda, &prime256k1);
memcpy(&xr, &lambda, sizeof(bignum256));
bn_multiply(&xr, &xr, &prime256k1);
temp = 0;
for (i = 0; i < 9; i++) {
temp += xr.val[i] + 3u * prime256k1.val[i] - 2u * cp->x.val[i];
xr.val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
bn_fast_mod(&xr, &prime256k1);
bn_substract(&(cp->x), &xr, &yr);
// no need to fast_mod here
// bn_fast_mod(&yr);
bn_multiply(&lambda, &yr, &prime256k1);
bn_substract(&yr, &(cp->y), &yr);
bn_fast_mod(&yr, &prime256k1);
memcpy(&(cp->x), &xr, sizeof(bignum256));
memcpy(&(cp->y), &yr, sizeof(bignum256));
}
// res = k * G
void scalar_multiply(bignum256 *k, curve_point *res)
{
int i, j;
// result is zero
int is_zero = 1;
#ifdef USE_PRECOMPUTED_CP
int exp = 0;
#else
curve_point curr;
// initial res
memcpy(&curr, &G256k1, sizeof(curve_point));
#endif
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (k->val[i] >> j) == 0) break;
if (k->val[i] & (1u << j)) {
if (is_zero) {
#ifdef USE_PRECOMPUTED_CP
memcpy(res, secp256k1_cp + exp, sizeof(curve_point));
#else
memcpy(res, &curr, sizeof(curve_point));
#endif
is_zero = 0;
} else {
#ifdef USE_PRECOMPUTED_CP
point_add(secp256k1_cp + exp, res);
#else
point_add(&curr, res);
#endif
}
}
#ifdef USE_PRECOMPUTED_CP
exp++;
#else
point_double(&curr);
#endif
}
}
bn_mod(&(res->x), &prime256k1);
bn_mod(&(res->y), &prime256k1);
}
// generate random K for signing
int generate_k_random(bignum256 *k) {
int i, j;
for (j = 0; j < 10000; j++) {
for (i = 0; i < 8; i++) {
k->val[i] = random32() & 0x3FFFFFFF;
}
k->val[8] = random32() & 0xFFFF;
// if k is too big or too small, we don't like it
if (k->val[5] == 0x3FFFFFFF && k->val[6] == 0x3FFFFFFF && k->val[7] == 0x3FFFFFFF && k->val[8] == 0xFFFF) continue;
if (k->val[5] == 0x0 && k->val[6] == 0x0 && k->val[7] == 0x0 && k->val[8] == 0x0) continue;
return 0; // good number - no error
}
// we generated 10000 numbers, none of them is good -> fail
return 1;
}
// generate K in a deterministic way, according to RFC6979
// http://tools.ietf.org/html/rfc6979
int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash)
{
int i;
uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)], t[32];
bignum256 z1;
memcpy(bx, priv_key, 32);
bn_read_be(hash, &z1);
bn_mod(&z1, &order256k1);
bn_write_be(&z1, bx + 32);
memset(v, 1, sizeof(v));
memset(k, 0, sizeof(k));
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x00;
memcpy(buf + sizeof(v) + 1, bx, 64);
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x01;
memcpy(buf + sizeof(v) + 1, bx, 64);
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
hmac_sha256(k, sizeof(k), v, sizeof(k), v);
for (i = 0; i < 10000; i++) {
hmac_sha256(k, sizeof(k), v, sizeof(v), t);
bn_read_be(t, secret);
if ( !bn_is_zero(secret) && bn_is_less(secret, &order256k1) ) {
return 0; // good number -> no error
}
memcpy(buf, v, sizeof(v));
buf[sizeof(v)] = 0x00;
hmac_sha256(k, sizeof(k), buf, sizeof(v) + 1, k);
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
}
// we generated 10000 numbers, none of them is good -> fail
return 1;
}
// uses secp256k1 curve
// priv_key is a 32 byte big endian stored number
// msg is a data to be signed
// msg_len is the message length
// sig is 64 bytes long array for the signature
int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig)
{
uint32_t i;
uint8_t hash[32];
curve_point R;
bignum256 k, z;
bignum256 *da = &R.y;
// compute hash function of message
SHA256_Raw(msg, msg_len, hash);
// if double hash is required uncomment the following line:
// SHA256_Raw(hash, 32, hash);
bn_read_be(hash, &z);
// generate random number k
//if (generate_k_random(&k) != 0) {
// return 1;
//}
// generate K deterministically
if (generate_k_rfc6979(&k, priv_key, hash) != 0) {
return 1;
}
// compute k*G
scalar_multiply(&k, &R);
// r = (rx mod n)
bn_mod(&R.x, &order256k1);
// if r is zero, we fail
for (i = 0; i < 9; i++) {
if (R.x.val[i] != 0) break;
}
if (i == 9) {
return 2;
}
bn_inverse(&k, &order256k1);
bn_read_be(priv_key, da);
bn_multiply(&R.x, da, &order256k1);
for (i = 0; i < 8; i++) {
da->val[i] += z.val[i];
da->val[i + 1] += (da->val[i] >> 30);
da->val[i] &= 0x3FFFFFFF;
}
da->val[8] += z.val[8];
bn_multiply(da, &k, &order256k1);
bn_mod(&k, &order256k1);
for (i = 0; i < 9; i++) {
if (k.val[i] != 0) break;
}
// if k is zero, we fail
if (i == 9) {
return 3;
}
// we are done, R.x and k is the result signature
bn_write_be(&R.x, sig);
bn_write_be(&k, sig + 32);
return 0;
}
void ecdsa_get_public_key33(const uint8_t *priv_key, uint8_t *pub_key)
{
curve_point R;
bignum256 k;
bn_read_be(priv_key, &k);
// compute k*G
scalar_multiply(&k, &R);
pub_key[0] = 0x02 | (R.y.val[0] & 0x01);
bn_write_be(&R.x, pub_key + 1);
}
void ecdsa_get_public_key65(const uint8_t *priv_key, uint8_t *pub_key)
{
curve_point R;
bignum256 k;
bn_read_be(priv_key, &k);
// compute k*G
scalar_multiply(&k, &R);
pub_key[0] = 0x04;
bn_write_be(&R.x, pub_key + 1);
bn_write_be(&R.y, pub_key + 33);
}
void ecdsa_get_address(const uint8_t *pub_key, char version, char *addr)
{
const char code[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
char *p = addr, s;
uint8_t a[32], b[21];
uint32_t r;
bignum256 c;
int i, l;
SHA256_Raw(pub_key, 33, a);
b[0] = version;
ripemd160(a, 32, b + 1);
SHA256_Raw(b, 21, a);
SHA256_Raw(a, 32, a);
memcpy(a + 28, a, 4); // checksum
memset(a, 0, 7); // zeroes
memcpy(a + 7, b, 21); // ripemd160(sha256(version + pubkey)
bn_read_be(a, &c);
while (!bn_is_zero(&c)) {
bn_divmod58(&c, &r);
*p = code[r];
p++;
}
if (a[0] == 0) {
*p = '1';
p++;
}
*p = 0;
l = strlen(addr);
for (i = 0; i < l / 2; i++) {
s = addr[i];
addr[i] = addr[l - 1 - i];
addr[l - 1 - i] = s;;
}
}
// uses secp256k1 curve
// pub_key - 65 bytes uncompressed key
// signature - 64 bytes signature
// msg is a data that was signed
// msg_len is the message length
// returns 0 if verification succeeded
// it is assumed that public key is valid otherwise calling this does not make much sense
int ecdsa_verify(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len)
{
int i, j;
uint8_t hash[32];
curve_point pub, res;
bignum256 r, s, z;
int res_is_zero = 0;
// compute hash function of message
SHA256_Raw(msg, msg_len, hash);
// if double hash is required uncomment the following line:
// SHA256_Raw(hash, 32, hash);
if (pub_key[0] == 0x04) {
bn_read_be(pub_key + 1, &pub.x);
bn_read_be(pub_key + 33, &pub.y);
} else
if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords
// y^2 = x^3 + 0*x + 7
bn_read_be(pub_key + 1, &pub.x);
bn_read_be(pub_key + 1, &pub.y); // y is x
bn_multiply(&pub.x, &pub.y, &prime256k1); // y is x^2
bn_multiply(&pub.x, &pub.y, &prime256k1); // y is x^3
bn_addmodi(&pub.y, 7, &prime256k1); // y is x^3 + 7
bn_sqrt(&pub.y, &prime256k1); // y = sqrt(y)
if ((pub_key[0] & 0x01) != (pub.y.val[0] & 1)) {
bn_substract(&prime256k1, &pub.y, &pub.y); // y = -y
bn_mod(&pub.y, &prime256k1);
}
} else
return 1;
bn_read_be(sig, &r);
bn_read_be(sig + 32, &s);
bn_read_be(hash, &z);
if (bn_is_zero(&r) ||
bn_is_zero(&s) ||
(!bn_is_less(&r, &order256k1)) ||
(!bn_is_less(&s, &order256k1))) return 2;
bn_inverse(&s, &order256k1); // s^-1
bn_multiply(&s, &z, &order256k1); // z*s^-1
bn_mod(&z, &order256k1);
bn_multiply(&r, &s, &order256k1); // r*s^-1
bn_mod(&s, &order256k1);
if (bn_is_zero(&z)) {
// our message hashes to zero
// I don't expect this to happen any time soon
res_is_zero = 1;
} else {
scalar_multiply(&z, &res);
}
// TODO both pub and res can be infinity, can have y = 0 OR can be equal
for (i = 0; i < 9; i++) {
for (j = 0; j < 30; j++) {
if (i == 8 && (s.val[i] >> j) == 0) break;
if (s.val[i] & (1u << j)) {
point_add(&pub, &res);
}
point_double(&pub);
}
}
bn_mod(&(res.x), &prime256k1);
bn_mod(&(res.x), &order256k1);
for (i = 0; i < 9; i++) {
if (res.x.val[i] != r.val[i]) {
return 3;
}
}
return 0;
}