1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-20 21:38:26 +00:00
trezor-firmware/firmware/transaction.c
2014-04-29 14:38:32 +02:00

460 lines
12 KiB
C

/*
* This file is part of the TREZOR project.
*
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "transaction.h"
#include "ecdsa.h"
#include "coins.h"
#include "util.h"
#include "debug.h"
#include "protect.h"
#include "layout2.h"
#include "messages.pb.h"
// aux methods
uint32_t ser_length(uint32_t len, uint8_t *out) {
if (len < 253) {
out[0] = len & 0xFF;
return 1;
}
if (len < 0x10000) {
out[0] = 253;
out[1] = len & 0xFF;
out[2] = (len >> 8) & 0xFF;
return 3;
}
out[0] = 254;
out[1] = len & 0xFF;
out[2] = (len >> 8) & 0xFF;
out[3] = (len >> 16) & 0xFF;
out[4] = (len >> 24) & 0xFF;
return 5;
}
uint32_t op_push(uint32_t i, uint8_t *out) {
if (i < 0x4C) {
out[0] = i & 0xFF;
return 1;
}
if (i < 0xFF) {
out[0] = 0x4C;
out[1] = i & 0xFF;
return 2;
}
if (i < 0xFFFF) {
out[0] = 0x4D;
out[1] = i & 0xFF;
out[2] = (i >> 8) & 0xFF;
return 3;
}
out[0] = 0x4E;
out[1] = i & 0xFF;
out[2] = (i >> 8) & 0xFF;
out[3] = (i >> 16) & 0xFF;
out[4] = (i >> 24) & 0xFF;
return 5;
}
int compile_output(const CoinType *coin, const HDNode *root, TxOutputType *in, TxOutputBinType *out, bool needs_confirm)
{
// address_n provided-> change address -> calculate from address_n
if (in->address_n_count > 0) {
HDNode node;
uint32_t k;
memcpy(&node, root, sizeof(HDNode));
for (k = 0; k < in->address_n_count; k++) {
hdnode_private_ckd(&node, in->address_n[k]);
}
ecdsa_get_address(node.public_key, coin->address_type, in->address);
} else
if (in->has_address) { // address provided -> regular output
if (needs_confirm) {
layoutConfirmOutput(coin, in);
if (!protectButton(ButtonRequestType_ButtonRequest_ConfirmOutput, false)) {
return -1;
}
}
} else { // does not have address_n neither address
return 0;
}
memset(out, 0, sizeof(TxOutputBinType));
out->amount = in->amount;
if (in->script_type == ScriptType_PAYTOADDRESS) {
out->script_pubkey.bytes[0] = 0x76; // OP_DUP
out->script_pubkey.bytes[1] = 0xA9; // OP_HASH_160
out->script_pubkey.bytes[2] = 0x14; // pushing 20 bytes
uint8_t decoded[21];
if (!ecdsa_address_decode(in->address, decoded)) {
return 0;
}
memcpy(out->script_pubkey.bytes + 3, decoded + 1, 20);
out->script_pubkey.bytes[23] = 0x88; // OP_EQUALVERIFY
out->script_pubkey.bytes[24] = 0xAC; // OP_CHECKSIG
out->script_pubkey.size = 25;
return 25;
}
if (in->script_type == ScriptType_PAYTOSCRIPTHASH) {
out->script_pubkey.bytes[0] = 0xA9; // OP_HASH_160
out->script_pubkey.bytes[1] = 0x14; // pushing 20 bytes
uint8_t decoded[21];
if (!ecdsa_address_decode(in->address, decoded)) {
return 0;
}
memcpy(out->script_pubkey.bytes + 2, decoded + 1, 20);
out->script_pubkey.bytes[22] = 0x87; // OP_EQUAL
out->script_pubkey.size = 23;
return 23;
}
return 0;
}
uint32_t compile_script_sig(uint8_t address_type, const uint8_t *pubkeyhash, uint8_t *out)
{
if (coinByAddressType(address_type)) { // valid coin type
out[0] = 0x76; // OP_DUP
out[1] = 0xA9; // OP_HASH_160
out[2] = 0x14; // pushing 20 bytes
memcpy(out + 3, pubkeyhash, 20);
out[23] = 0x88; // OP_EQUALVERIFY
out[24] = 0xAC; // OP_CHECKSIG
return 25;
} else {
return 0; // unsupported
}
}
int serialize_script_sig(uint8_t *signature, uint32_t signature_len, uint8_t *pubkey, uint32_t pubkey_len, uint8_t *out)
{
uint32_t r = 0;
r += op_push(signature_len + 1, out + r);
memcpy(out + r, signature, signature_len); r += signature_len;
out[r] = 0x01; r++;
r += op_push(pubkey_len, out + r);
memcpy(out + r, pubkey, pubkey_len); r += pubkey_len;
return r;
}
// tx methods
uint32_t tx_serialize_header(TxStruct *tx, uint8_t *out)
{
memcpy(out, &(tx->version), 4);
return 4 + ser_length(tx->inputs_len, out + 4);
}
uint32_t tx_serialize_input(TxStruct *tx, uint8_t *prev_hash, uint32_t prev_index, uint8_t *script_sig, uint32_t script_sig_len, uint32_t sequence, uint8_t *out)
{
int i;
if (tx->have_inputs >= tx->inputs_len) {
// already got all inputs
return 0;
}
uint32_t r = 0;
if (tx->have_inputs == 0) {
r += tx_serialize_header(tx, out + r);
}
for (i = 0; i < 32; i++) {
*(out + r + i) = prev_hash[31 - i];
}
r += 32;
memcpy(out + r, &prev_index, 4); r += 4;
r += ser_length(script_sig_len, out + r);
memcpy(out + r, script_sig, script_sig_len); r+= script_sig_len;
memcpy(out + r, &sequence, 4); r += 4;
tx->have_inputs++;
tx->size += r;
return r;
}
uint32_t tx_serialize_middle(TxStruct *tx, uint8_t *out)
{
return ser_length(tx->outputs_len, out);
}
uint32_t tx_serialize_footer(TxStruct *tx, uint8_t *out)
{
memcpy(out, &(tx->lock_time), 4);
if (tx->add_hash_type) {
uint32_t ht = 1;
memcpy(out + 4, &ht, 4);
return 8;
} else {
return 4;
}
}
uint32_t tx_serialize_output(TxStruct *tx, uint64_t amount, uint8_t *script_pubkey, uint32_t script_pubkey_len, uint8_t *out)
{
if (tx->have_inputs < tx->inputs_len) {
// not all inputs provided
return 0;
}
if (tx->have_outputs >= tx->outputs_len) {
// already got all outputs
return 0;
}
uint32_t r = 0;
if (tx->have_outputs == 0) {
r += tx_serialize_middle(tx, out + r);
}
memcpy(out + r, &amount, 8); r += 8;
r += ser_length(script_pubkey_len, out + r);
memcpy(out + r, script_pubkey, script_pubkey_len); r+= script_pubkey_len;
tx->have_outputs++;
if (tx->have_outputs == tx->outputs_len) {
r += tx_serialize_footer(tx, out + r);
}
tx->size += r;
return r;
}
void tx_init(TxStruct *tx, uint32_t inputs_len, uint32_t outputs_len, uint32_t version, uint32_t lock_time, bool add_hash_type)
{
tx->inputs_len = inputs_len;
tx->outputs_len = outputs_len;
tx->version = version;
tx->lock_time = lock_time;
tx->add_hash_type = add_hash_type;
tx->have_inputs = 0;
tx->have_outputs = 0;
tx->size = 0;
sha256_Init(&(tx->ctx));
}
bool tx_hash_input(TxStruct *t, TxInputType *input)
{
uint8_t buf[512];
uint32_t r = tx_serialize_input(t, input->prev_hash.bytes, input->prev_index, input->script_sig.bytes, input->script_sig.size, input->sequence, buf);
if (!r) return false;
sha256_Update(&(t->ctx), buf, r);
return true;
}
bool tx_hash_output(TxStruct *t, TxOutputBinType *output)
{
uint8_t buf[512];
uint32_t r = tx_serialize_output(t, output->amount, output->script_pubkey.bytes, output->script_pubkey.size, buf);
if (!r) return false;
sha256_Update(&(t->ctx), buf, r);
return true;
}
void tx_hash_final(TxStruct *t, uint8_t *hash, bool reverse)
{
sha256_Final(hash, &(t->ctx));
sha256_Raw(hash, 32, hash);
if (!reverse) return;
uint8_t i, k;
for (i = 0; i < 16; i++) {
k = hash[31 - i];
hash[31 - i] = hash[i];
hash[i] = k;
}
}
bool transactionHash(TransactionType *tx, uint8_t *hash)
{
TxStruct t;
uint32_t i;
tx_init(&t, tx->inputs_count, tx->bin_outputs_count, tx->version, tx->lock_time, false);
for (i = 0; i < tx->inputs_count; i++) {
if (!tx_hash_input(&t, &(tx->inputs[i]))) return false;
}
for (i = 0; i < tx->bin_outputs_count; i++) {
if (!tx_hash_output(&t, &(tx->bin_outputs[i]))) return false;
}
tx_hash_final(&t, hash, true);
return true;
}
int transactionSimpleSign(const CoinType *coin, HDNode *root, TxInputType *inputs, uint32_t inputs_count, TxOutputType *outputs, uint32_t outputs_count, uint32_t version, uint32_t lock_time, uint8_t *out)
{
uint32_t idx, i, k, r = 0;
TxStruct ti, to;
uint8_t buf[512];
TxInputType input;
TxOutputBinType output;
HDNode node;
uint8_t privkey[32], pubkey[33], hash[32], sig[64];
layoutProgressSwipe("Signing", 0, 0);
tx_init(&to, inputs_count, outputs_count, version, lock_time, false);
for (idx = 0; idx < inputs_count; idx++) {
// compute inner transaction
memcpy(&input, &(inputs[idx]), sizeof(TxInputType));
tx_init(&ti, inputs_count, outputs_count, version, lock_time, true);
memset(privkey, 0, 32);
memset(pubkey, 0, 33);
for (i = 0; i < inputs_count; i++) {
if (i == idx) {
memcpy(&node, root, sizeof(HDNode));
for (k = 0; k < inputs[i].address_n_count; k++) {
hdnode_private_ckd(&node, inputs[i].address_n[k]);
}
ecdsa_get_pubkeyhash(node.public_key, hash);
inputs[i].script_sig.size = compile_script_sig(coin->address_type, hash, inputs[i].script_sig.bytes);
if (inputs[i].script_sig.size == 0) {
return 0;
}
memcpy(privkey, node.private_key, 32);
memcpy(pubkey, node.public_key, 33);
} else {
inputs[i].script_sig.size = 0;
}
if (!tx_hash_input(&ti, &(inputs[i]))) return 0;
}
for (i = 0; i < outputs_count; i++) {
int co = compile_output(coin, root, &(outputs[i]), &output, idx == 0);
if (co <= 0) {
return co;
}
if (!tx_hash_output(&ti, &output)) return 0;
}
tx_hash_final(&ti, hash, false);
ecdsa_sign_digest(privkey, hash, sig);
int der_len = ecdsa_sig_to_der(sig, buf);
input.script_sig.size = serialize_script_sig(buf, der_len, pubkey, 33, input.script_sig.bytes);
r += tx_serialize_input(&to, input.prev_hash.bytes, input.prev_index, input.script_sig.bytes, input.script_sig.size, input.sequence, out + r);
layoutProgress("Signing", 1000 * idx / inputs_count, idx);
}
for (i = 0; i < outputs_count; i++) {
if (compile_output(coin, root, &(outputs[i]), &output, false) <= 0) {
return 0;
}
r += tx_serialize_output(&to, output.amount, output.script_pubkey.bytes, output.script_pubkey.size, out + r);
}
return r;
}
uint32_t transactionEstimateSize(uint32_t inputs, uint32_t outputs)
{
return 10 + inputs * 149 + outputs * 35;
}
uint32_t transactionEstimateSizeKb(uint32_t inputs, uint32_t outputs)
{
return (transactionEstimateSize(inputs, outputs) + 999) / 1000;
}
bool transactionMessageSign(uint8_t *message, uint32_t message_len, uint8_t *privkey, const char *address, uint8_t *signature)
{
if (message_len >= 256) {
return false;
}
SHA256_CTX ctx;
uint8_t i, hash[32];
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
i = message_len;
sha256_Update(&ctx, &i, 1);
sha256_Update(&ctx, message, message_len);
sha256_Final(hash, &ctx);
sha256_Raw(hash, 32, hash);
ecdsa_sign_digest(privkey, hash, signature + 1);
for (i = 27 + 4; i < 27 + 4 + 4; i++) {
signature[0] = i;
if (transactionMessageVerify(message, message_len, signature, address)) {
return true;
}
}
return false;
}
bool transactionMessageVerify(uint8_t *message, uint32_t message_len, uint8_t *signature, const char *address)
{
if (message_len >= 256) {
return false;
}
bool compressed;
uint8_t nV = signature[0];
bignum256 r, s, e;
curve_point cp, cp2;
SHA256_CTX ctx;
uint8_t i, pubkey[65], decoded[21], hash[32];
char addr[35];
if (nV < 27 || nV >= 35) {
return false;
}
compressed = (nV >= 31);
if (compressed) {
nV -= 4;
}
uint8_t recid = nV - 27;
// read r and s
bn_read_be(signature + 1, &r);
bn_read_be(signature + 33, &s);
// x = r + (recid / 2) * order
bn_zero(&cp.x);
for (i = 0; i < recid / 2; i++) {
bn_addmod(&cp.x, &order256k1, &prime256k1);
}
bn_addmod(&cp.x, &r, &prime256k1);
// compute y from x
uncompress_coords(recid % 2, &cp.x, &cp.y);
// calculate hash
sha256_Init(&ctx);
sha256_Update(&ctx, (const uint8_t *)"\x18" "Bitcoin Signed Message:" "\n", 25);
i = message_len;
sha256_Update(&ctx, &i, 1);
sha256_Update(&ctx, message, message_len);
sha256_Final(hash, &ctx);
sha256_Raw(hash, 32, hash);
// e = -hash
bn_read_be(hash, &e);
bn_substract_noprime(&order256k1, &e, &e);
// r = r^-1
bn_inverse(&r, &order256k1);
point_multiply(&s, &cp, &cp);
scalar_multiply(&e, &cp2);
point_add(&cp2, &cp);
point_multiply(&r, &cp, &cp);
pubkey[0] = 0x04;
bn_write_be(&cp.x, pubkey + 1);
bn_write_be(&cp.y, pubkey + 33);
// check if the address is correct when provided
if (address) {
ecdsa_address_decode(address, decoded);
if (compressed) {
pubkey[0] = 0x02 | (cp.y.val[0] & 0x01);
}
ecdsa_get_address(pubkey, decoded[0], addr);
if (strcmp(addr, address) != 0) {
return false;
}
}
// check if signature verifies the digest
if (ecdsa_verify_digest(pubkey, signature + 1, hash) != 0) {
return false;
}
return true;
}