1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-18 05:28:40 +00:00
trezor-firmware/trezorlib/client.py
Tomas Susanka d6f0c54d3e tests: CallException relaced with AssertionException in response validation
Generic exceptions are evil. When throwing a CallException in the
request check you can't distinguish in the tests if it is an Exception
that occured in during the execution (that's CallException) or during
some tests (that used to be CallException as well).
2018-02-22 16:51:34 +01:00

1178 lines
43 KiB
Python

# This file is part of the TREZOR project.
#
# Copyright (C) 2012-2016 Marek Palatinus <slush@satoshilabs.com>
# Copyright (C) 2012-2016 Pavol Rusnak <stick@satoshilabs.com>
# Copyright (C) 2016 Jochen Hoenicke <hoenicke@gmail.com>
#
# This library is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this library. If not, see <http://www.gnu.org/licenses/>.
from __future__ import print_function, absolute_import
import os
import sys
import time
import binascii
import hashlib
import unicodedata
import json
import getpass
import warnings
from mnemonic import Mnemonic
from . import messages as proto
from . import tools
from . import mapping
from .coins import coins_slip44
from .debuglink import DebugLink
# Python2 vs Python3
try:
input = raw_input
except NameError:
pass
if sys.version_info.major < 3:
warnings.warn("Trezorlib will stop supporting Python2 in next versions.", DeprecationWarning)
# try:
# from PIL import Image
# SCREENSHOT = True
# except:
# SCREENSHOT = False
SCREENSHOT = False
def getch():
try:
import termios
except ImportError:
# Non-POSIX. Return msvcrt's (Windows') getch.
import msvcrt
return msvcrt.getch()
# POSIX system. Create and return a getch that manipulates the tty.
import sys
import tty
def _getch():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:
tty.setraw(fd)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
return _getch()
def get_buttonrequest_value(code):
# Converts integer code to its string representation of ButtonRequestType
return [k for k in dir(proto.ButtonRequestType) if getattr(proto.ButtonRequestType, k) == code][0]
def pprint(msg):
msg_class = msg.__class__.__name__
msg_size = msg.ByteSize()
if isinstance(msg, proto.FirmwareUpload) or isinstance(msg, proto.SelfTest):
return "<%s> (%d bytes):\n" % (msg_class, msg_size)
else:
return "<%s> (%d bytes):\n%s" % (msg_class, msg_size, msg)
def log(msg):
sys.stderr.write(msg)
sys.stderr.write('\n')
sys.stderr.flush()
class CallException(Exception):
def __init__(self, code, message):
super(CallException, self).__init__()
self.args = [code, message]
class AssertionException(Exception):
def __init__(self, code, message):
self.args = [code, message]
class PinException(CallException):
pass
class field(object):
# Decorator extracts single value from
# protobuf object. If the field is not
# present, raises an exception.
def __init__(self, field):
self.field = field
def __call__(self, f):
def wrapped_f(*args, **kwargs):
ret = f(*args, **kwargs)
return getattr(ret, self.field)
return wrapped_f
class expect(object):
# Decorator checks if the method
# returned one of expected protobuf messages
# or raises an exception
def __init__(self, *expected):
self.expected = expected
def __call__(self, f):
def wrapped_f(*args, **kwargs):
ret = f(*args, **kwargs)
if not isinstance(ret, self.expected):
raise RuntimeError("Got %s, expected %s" % (ret.__class__, self.expected))
return ret
return wrapped_f
def session(f):
# Decorator wraps a BaseClient method
# with session activation / deactivation
def wrapped_f(*args, **kwargs):
client = args[0]
client.transport.session_begin()
try:
return f(*args, **kwargs)
finally:
client.transport.session_end()
return wrapped_f
def normalize_nfc(txt):
if sys.version_info[0] < 3:
if isinstance(txt, unicode):
return unicodedata.normalize('NFC', txt)
if isinstance(txt, str):
return unicodedata.normalize('NFC', txt.decode('utf-8'))
else:
if isinstance(txt, bytes):
return unicodedata.normalize('NFC', txt.decode('utf-8'))
if isinstance(txt, str):
return unicodedata.normalize('NFC', txt)
raise ValueError('unicode/str or bytes/str expected')
class BaseClient(object):
# Implements very basic layer of sending raw protobuf
# messages to device and getting its response back.
def __init__(self, transport, **kwargs):
self.transport = transport
super(BaseClient, self).__init__() # *args, **kwargs)
def close(self):
pass
def cancel(self):
self.transport.write(proto.Cancel())
@session
def call_raw(self, msg):
self.transport.write(msg)
return self.transport.read()
@session
def call(self, msg):
resp = self.call_raw(msg)
handler_name = "callback_%s" % resp.__class__.__name__
handler = getattr(self, handler_name, None)
if handler is not None:
msg = handler(resp)
if msg is None:
raise ValueError("Callback %s must return protobuf message, not None" % handler)
resp = self.call(msg)
return resp
def callback_Failure(self, msg):
if msg.code in (proto.FailureType.PinInvalid,
proto.FailureType.PinCancelled, proto.FailureType.PinExpected):
raise PinException(msg.code, msg.message)
raise CallException(msg.code, msg.message)
def register_message(self, msg):
'''Allow application to register custom protobuf message type'''
mapping.register_message(msg)
class VerboseWireMixin(object):
def call_raw(self, msg):
log("SENDING " + pprint(msg))
resp = super(VerboseWireMixin, self).call_raw(msg)
log("RECEIVED " + pprint(resp))
return resp
class TextUIMixin(object):
# This class demonstrates easy test-based UI
# integration between the device and wallet.
# You can implement similar functionality
# by implementing your own GuiMixin with
# graphical widgets for every type of these callbacks.
def __init__(self, *args, **kwargs):
super(TextUIMixin, self).__init__(*args, **kwargs)
def callback_ButtonRequest(self, msg):
# log("Sending ButtonAck for %s " % get_buttonrequest_value(msg.code))
return proto.ButtonAck()
def callback_RecoveryMatrix(self, msg):
if self.recovery_matrix_first_pass:
self.recovery_matrix_first_pass = False
log("Use the numeric keypad to describe positions. For the word list use only left and right keys.")
log("Use backspace to correct an entry. The keypad layout is:")
log(" 7 8 9 7 | 9")
log(" 4 5 6 4 | 6")
log(" 1 2 3 1 | 3")
while True:
character = getch()
if character in ('\x03', '\x04'):
return proto.Cancel()
if character in ('\x08', '\x7f'):
return proto.WordAck(word='\x08')
# ignore middle column if only 6 keys requested.
if msg.type == proto.WordRequestType.Matrix6 and character in ('2', '5', '8'):
continue
if character.isdigit():
return proto.WordAck(word=character)
def callback_PinMatrixRequest(self, msg):
if msg.type == proto.PinMatrixRequestType.Current:
desc = 'current PIN'
elif msg.type == proto.PinMatrixRequestType.NewFirst:
desc = 'new PIN'
elif msg.type == proto.PinMatrixRequestType.NewSecond:
desc = 'new PIN again'
else:
desc = 'PIN'
log("Use the numeric keypad to describe number positions. The layout is:")
log(" 7 8 9")
log(" 4 5 6")
log(" 1 2 3")
log("Please enter %s: " % desc)
pin = getpass.getpass('')
if not pin.isdigit():
raise ValueError('Non-numerical PIN provided')
return proto.PinMatrixAck(pin=pin)
def callback_PassphraseRequest(self, msg):
if msg.on_device is True:
return proto.PassphraseAck()
if os.getenv("PASSPHRASE") is not None:
log("Passphrase required. Using PASSPHRASE environment variable.")
passphrase = Mnemonic.normalize_string(os.getenv("PASSPHRASE"))
return proto.PassphraseAck(passphrase=passphrase)
log("Passphrase required: ")
passphrase = getpass.getpass('')
log("Confirm your Passphrase: ")
if passphrase == getpass.getpass(''):
passphrase = Mnemonic.normalize_string(passphrase)
return proto.PassphraseAck(passphrase=passphrase)
else:
log("Passphrase did not match! ")
exit()
def callback_WordRequest(self, msg):
if msg.type in (proto.WordRequestType.Matrix9,
proto.WordRequestType.Matrix6):
return self.callback_RecoveryMatrix(msg)
log("Enter one word of mnemonic: ")
word = input()
if self.expand:
word = self.mnemonic_wordlist.expand_word(word)
return proto.WordAck(word=word)
class DebugLinkMixin(object):
# This class implements automatic responses
# and other functionality for unit tests
# for various callbacks, created in order
# to automatically pass unit tests.
#
# This mixing should be used only for purposes
# of unit testing, because it will fail to work
# without special DebugLink interface provided
# by the device.
def __init__(self, *args, **kwargs):
super(DebugLinkMixin, self).__init__(*args, **kwargs)
self.debug = None
self.in_with_statement = 0
self.button_wait = 0
self.screenshot_id = 0
# Always press Yes and provide correct pin
self.setup_debuglink(True, True)
# Do not expect any specific response from device
self.expected_responses = None
# Use blank passphrase
self.set_passphrase('')
def close(self):
super(DebugLinkMixin, self).close()
if self.debug:
self.debug.close()
def set_debuglink(self, debug_transport):
self.debug = DebugLink(debug_transport)
def set_buttonwait(self, secs):
self.button_wait = secs
def __enter__(self):
# For usage in with/expected_responses
self.in_with_statement += 1
return self
def __exit__(self, _type, value, traceback):
self.in_with_statement -= 1
if _type is not None:
# Another exception raised
return False
# return isinstance(value, TypeError)
# Evaluate missed responses in 'with' statement
if self.expected_responses is not None and len(self.expected_responses):
raise RuntimeError("Some of expected responses didn't come from device: %s" %
[pprint(x) for x in self.expected_responses])
# Cleanup
self.expected_responses = None
return False
def set_expected_responses(self, expected):
if not self.in_with_statement:
raise RuntimeError("Must be called inside 'with' statement")
self.expected_responses = expected
def setup_debuglink(self, button, pin_correct):
self.button = button # True -> YES button, False -> NO button
self.pin_correct = pin_correct
def set_passphrase(self, passphrase):
self.passphrase = Mnemonic.normalize_string(passphrase)
def set_mnemonic(self, mnemonic):
self.mnemonic = Mnemonic.normalize_string(mnemonic).split(' ')
def call_raw(self, msg):
if SCREENSHOT and self.debug:
layout = self.debug.read_layout()
im = Image.new("RGB", (128, 64))
pix = im.load()
for x in range(128):
for y in range(64):
rx, ry = 127 - x, 63 - y
if (ord(layout[rx + (ry / 8) * 128]) & (1 << (ry % 8))) > 0:
pix[x, y] = (255, 255, 255)
im.save('scr%05d.png' % self.screenshot_id)
self.screenshot_id += 1
resp = super(DebugLinkMixin, self).call_raw(msg)
self._check_request(resp)
return resp
def _check_request(self, msg):
if self.expected_responses is not None:
try:
expected = self.expected_responses.pop(0)
except IndexError:
raise AssertionException(proto.FailureType.UnexpectedMessage,
"Got %s, but no message has been expected" % pprint(msg))
if msg.__class__ != expected.__class__:
raise AssertionException(proto.FailureType.UnexpectedMessage,
"Expected %s, got %s" % (pprint(expected), pprint(msg)))
for field, value in expected.__dict__.items():
if value is None or value == []:
continue
if getattr(msg, field) != value:
raise AssertionException(proto.FailureType.UnexpectedMessage,
"Expected %s, got %s" % (pprint(expected), pprint(msg)))
def callback_ButtonRequest(self, msg):
log("ButtonRequest code: " + get_buttonrequest_value(msg.code))
log("Pressing button " + str(self.button))
if self.button_wait:
log("Waiting %d seconds " % self.button_wait)
time.sleep(self.button_wait)
self.debug.press_button(self.button)
return proto.ButtonAck()
def callback_PinMatrixRequest(self, msg):
if self.pin_correct:
pin = self.debug.read_pin_encoded()
else:
pin = '444222'
return proto.PinMatrixAck(pin=pin)
def callback_PassphraseRequest(self, msg):
log("Provided passphrase: '%s'" % self.passphrase)
return proto.PassphraseAck(passphrase=self.passphrase)
def callback_WordRequest(self, msg):
(word, pos) = self.debug.read_recovery_word()
if word != '':
return proto.WordAck(word=word)
if pos != 0:
return proto.WordAck(word=self.mnemonic[pos - 1])
raise RuntimeError("Unexpected call")
class ProtocolMixin(object):
PRIME_DERIVATION_FLAG = 0x80000000
VENDORS = ('bitcointrezor.com', 'trezor.io')
def __init__(self, *args, **kwargs):
super(ProtocolMixin, self).__init__(*args, **kwargs)
self.init_device()
self.tx_api = None
def set_tx_api(self, tx_api):
self.tx_api = tx_api
def init_device(self):
self.features = expect(proto.Features)(self.call)(proto.Initialize())
if str(self.features.vendor) not in self.VENDORS:
raise RuntimeError("Unsupported device")
def _get_local_entropy(self):
return os.urandom(32)
def _convert_prime(self, n):
# Convert minus signs to uint32 with flag
return [int(abs(x) | self.PRIME_DERIVATION_FLAG) if x < 0 else x for x in n]
@staticmethod
def expand_path(n):
# Convert string of bip32 path to list of uint32 integers with prime flags
# 0/-1/1' -> [0, 0x80000001, 0x80000001]
if not n:
return []
n = n.split('/')
# m/a/b/c => a/b/c
if n[0] == 'm':
n = n[1:]
# coin_name/a/b/c => 44'/SLIP44_constant'/a/b/c
if n[0] in coins_slip44:
n = ["44'", "%d'" % coins_slip44[n[0]]] + n[1:]
path = []
for x in n:
prime = False
if x.endswith("'"):
x = x.replace('\'', '')
prime = True
if x.startswith('-'):
prime = True
x = abs(int(x))
if prime:
x |= ProtocolMixin.PRIME_DERIVATION_FLAG
path.append(x)
return path
@expect(proto.PublicKey)
def get_public_node(self, n, ecdsa_curve_name=None, show_display=False, coin_name=None):
n = self._convert_prime(n)
return self.call(proto.GetPublicKey(address_n=n, ecdsa_curve_name=ecdsa_curve_name, show_display=show_display, coin_name=coin_name))
@field('address')
@expect(proto.Address)
def get_address(self, coin_name, n, show_display=False, multisig=None, script_type=proto.InputScriptType.SPENDADDRESS):
n = self._convert_prime(n)
if multisig:
return self.call(proto.GetAddress(address_n=n, coin_name=coin_name, show_display=show_display, multisig=multisig, script_type=script_type))
else:
return self.call(proto.GetAddress(address_n=n, coin_name=coin_name, show_display=show_display, script_type=script_type))
@field('address')
@expect(proto.EthereumAddress)
def ethereum_get_address(self, n, show_display=False, multisig=None):
n = self._convert_prime(n)
return self.call(proto.EthereumGetAddress(address_n=n, show_display=show_display))
@session
def ethereum_sign_tx(self, n, nonce, gas_price, gas_limit, to, value, data=None, chain_id=None):
def int_to_big_endian(value):
import rlp.utils
if value == 0:
return b''
return rlp.utils.int_to_big_endian(value)
n = self._convert_prime(n)
msg = proto.EthereumSignTx(
address_n=n,
nonce=int_to_big_endian(nonce),
gas_price=int_to_big_endian(gas_price),
gas_limit=int_to_big_endian(gas_limit),
value=int_to_big_endian(value))
if to:
msg.to = to
if data:
msg.data_length = len(data)
data, chunk = data[1024:], data[:1024]
msg.data_initial_chunk = chunk
if chain_id:
msg.chain_id = chain_id
response = self.call(msg)
while response.data_length is not None:
data_length = response.data_length
data, chunk = data[data_length:], data[:data_length]
response = self.call(proto.EthereumTxAck(data_chunk=chunk))
return response.signature_v, response.signature_r, response.signature_s
@expect(proto.EthereumMessageSignature)
def ethereum_sign_message(self, n, message):
n = self._convert_prime(n)
# Convert message to UTF8 NFC (seems to be a bitcoin-qt standard)
message = normalize_nfc(message).encode('utf-8')
return self.call(proto.EthereumSignMessage(address_n=n, message=message))
def ethereum_verify_message(self, address, signature, message):
# Convert message to UTF8 NFC (seems to be a bitcoin-qt standard)
message = normalize_nfc(message).encode('utf-8')
try:
resp = self.call(proto.EthereumVerifyMessage(address=address, signature=signature, message=message))
except CallException as e:
resp = e
if isinstance(resp, proto.Success):
return True
return False
@field('entropy')
@expect(proto.Entropy)
def get_entropy(self, size):
return self.call(proto.GetEntropy(size=size))
@field('message')
@expect(proto.Success)
def ping(self, msg, button_protection=False, pin_protection=False, passphrase_protection=False):
msg = proto.Ping(message=msg,
button_protection=button_protection,
pin_protection=pin_protection,
passphrase_protection=passphrase_protection)
return self.call(msg)
def get_device_id(self):
return self.features.device_id
@field('message')
@expect(proto.Success)
def apply_settings(self, label=None, language=None, use_passphrase=None, homescreen=None):
settings = proto.ApplySettings()
if label is not None:
settings.label = label
if language:
settings.language = language
if use_passphrase is not None:
settings.use_passphrase = use_passphrase
if homescreen is not None:
settings.homescreen = homescreen
out = self.call(settings)
self.init_device() # Reload Features
return out
@field('message')
@expect(proto.Success)
def apply_flags(self, flags):
out = self.call(proto.ApplyFlags(flags=flags))
self.init_device() # Reload Features
return out
@field('message')
@expect(proto.Success)
def clear_session(self):
return self.call(proto.ClearSession())
@field('message')
@expect(proto.Success)
def change_pin(self, remove=False):
ret = self.call(proto.ChangePin(remove=remove))
self.init_device() # Re-read features
return ret
@expect(proto.MessageSignature)
def sign_message(self, coin_name, n, message, script_type=proto.InputScriptType.SPENDADDRESS):
n = self._convert_prime(n)
# Convert message to UTF8 NFC (seems to be a bitcoin-qt standard)
message = normalize_nfc(message).encode('utf-8')
return self.call(proto.SignMessage(coin_name=coin_name, address_n=n, message=message, script_type=script_type))
@expect(proto.SignedIdentity)
def sign_identity(self, identity, challenge_hidden, challenge_visual, ecdsa_curve_name=None):
return self.call(proto.SignIdentity(identity=identity, challenge_hidden=challenge_hidden, challenge_visual=challenge_visual, ecdsa_curve_name=ecdsa_curve_name))
@expect(proto.ECDHSessionKey)
def get_ecdh_session_key(self, identity, peer_public_key, ecdsa_curve_name=None):
return self.call(proto.GetECDHSessionKey(identity=identity, peer_public_key=peer_public_key, ecdsa_curve_name=ecdsa_curve_name))
@expect(proto.CosiCommitment)
def cosi_commit(self, n, data):
n = self._convert_prime(n)
return self.call(proto.CosiCommit(address_n=n, data=data))
@expect(proto.CosiSignature)
def cosi_sign(self, n, data, global_commitment, global_pubkey):
n = self._convert_prime(n)
return self.call(proto.CosiSign(address_n=n, data=data, global_commitment=global_commitment, global_pubkey=global_pubkey))
@field('message')
@expect(proto.Success)
def set_u2f_counter(self, u2f_counter):
ret = self.call(proto.SetU2FCounter(u2f_counter=u2f_counter))
return ret
@field("address")
@expect(proto.NEMAddress)
def nem_get_address(self, n, network, show_display=False):
n = self._convert_prime(n)
return self.call(proto.NEMGetAddress(address_n=n, network=network, show_display=show_display))
@expect(proto.NEMSignedTx)
def nem_sign_tx(self, n, transaction):
n = self._convert_prime(n)
def common_to_proto(common):
msg = proto.NEMTransactionCommon()
msg.network = (common["version"] >> 24) & 0xFF
msg.timestamp = common["timeStamp"]
msg.fee = common["fee"]
msg.deadline = common["deadline"]
if "signed" in common:
msg.signer = binascii.unhexlify(common["signer"])
return msg
def transfer_to_proto(transfer):
msg = proto.NEMTransfer()
msg.recipient = transfer["recipient"]
msg.amount = transfer["amount"]
if "payload" in transfer["message"]:
msg.payload = binascii.unhexlify(transfer["message"]["payload"])
if transfer["message"]["type"] == 0x02:
msg.public_key = binascii.unhexlify(transfer["message"]["publicKey"])
if "mosaics" in transfer:
msg._extend_mosaics(proto.NEMMosaic(
namespace=mosaic["mosaicId"]["namespaceId"],
mosaic=mosaic["mosaicId"]["name"],
quantity=mosaic["quantity"],
) for mosaic in transfer["mosaics"])
return msg
def aggregate_modification_to_proto(aggregate_modification, msg):
msg._extend_modifications(proto.NEMCosignatoryModification(
type=modification["modificationType"],
public_key=binascii.unhexlify(modification["cosignatoryAccount"]),
) for modification in aggregate_modification["modifications"])
if "minCosignatories" in aggregate_modification:
msg.relative_change = aggregate_modification["minCosignatories"]["relativeChange"]
def provision_namespace_to_proto(provision_namespace, msg):
msg.namespace = provision_namespace["newPart"]
if provision_namespace["parent"]:
msg.parent = provision_namespace["parent"]
msg.sink = provision_namespace["rentalFeeSink"]
msg.fee = provision_namespace["rentalFee"]
def mosaic_creation_to_proto(mosaic_creation):
msg = proto.NEMMosaicCreation()
msg.definition.namespace = mosaic_creation["mosaicDefinition"]["id"]["namespaceId"]
msg.definition.mosaic = mosaic_creation["mosaicDefinition"]["id"]["name"]
if mosaic_creation["mosaicDefinition"]["levy"]:
msg.definition.levy = mosaic_creation["mosaicDefinition"]["levy"]["type"]
msg.definition.fee = mosaic_creation["mosaicDefinition"]["levy"]["fee"]
msg.definition.levy_address = mosaic_creation["mosaicDefinition"]["levy"]["recipient"]
msg.definition.levy_namespace = mosaic_creation["mosaicDefinition"]["levy"]["mosaicId"]["namespaceId"]
msg.definition.levy_mosaic = mosaic_creation["mosaicDefinition"]["levy"]["mosaicId"]["name"]
msg.definition.description = mosaic_creation["mosaicDefinition"]["description"]
for property in mosaic_creation["mosaicDefinition"]["properties"]:
name = property["name"]
value = json.loads(property["value"])
if name == "divisibility":
msg.definition.divisibility = value
elif name == "initialSupply":
msg.definition.supply = value
elif name == "supplyMutable":
msg.definition.mutable_supply = value
elif name == "transferable":
msg.definition.transferable = value
msg.sink = mosaic_creation["creationFeeSink"]
msg.fee = mosaic_creation["creationFee"]
return msg
def mosaic_supply_change_to_proto(mosaic_supply_change):
msg = proto.NEMMosaicSupplyChange()
msg.namespace = mosaic_supply_change["mosaicId"]["namespaceId"]
msg.mosaic = mosaic_supply_change["mosaicId"]["name"]
msg.type = mosaic_supply_change["supplyType"]
msg.delta = mosaic_supply_change["delta"]
return msg
msg = proto.NEMSignTx()
msg.transaction = common_to_proto(transaction)
msg.transaction._extend_address_n(n)
msg.cosigning = (transaction["type"] == 0x1002)
if msg.cosigning or transaction["type"] == 0x1004:
transaction = transaction["otherTrans"]
msg.multisig = common_to_proto(transaction)
elif "otherTrans" in transaction:
raise CallException("Transaction does not support inner transaction")
if transaction["type"] == 0x0101:
msg.transfer = transfer_to_proto(transaction)
elif transaction["type"] == 0x1001:
aggregate_modification_to_proto(transaction, msg.aggregate_modification)
elif transaction["type"] == 0x2001:
provision_namespace_to_proto(transaction, msg.provision_namespace)
elif transaction["type"] == 0x4001:
msg = mosaic_creation_to_proto(transaction)
elif transaction["type"] == 0x4002:
msg.mosaic_supply_change = mosaic_supply_change_to_proto(transaction)
else:
raise CallException("Unknown transaction type")
return self.call(msg)
def verify_message(self, coin_name, address, signature, message):
# Convert message to UTF8 NFC (seems to be a bitcoin-qt standard)
message = normalize_nfc(message).encode('utf-8')
try:
resp = self.call(proto.VerifyMessage(address=address, signature=signature, message=message, coin_name=coin_name))
except CallException as e:
resp = e
if isinstance(resp, proto.Success):
return True
return False
@expect(proto.EncryptedMessage)
def encrypt_message(self, pubkey, message, display_only, coin_name, n):
if coin_name and n:
n = self._convert_prime(n)
return self.call(proto.EncryptMessage(pubkey=pubkey, message=message, display_only=display_only, coin_name=coin_name, address_n=n))
else:
return self.call(proto.EncryptMessage(pubkey=pubkey, message=message, display_only=display_only))
@expect(proto.DecryptedMessage)
def decrypt_message(self, n, nonce, message, msg_hmac):
n = self._convert_prime(n)
return self.call(proto.DecryptMessage(address_n=n, nonce=nonce, message=message, hmac=msg_hmac))
@field('value')
@expect(proto.CipheredKeyValue)
def encrypt_keyvalue(self, n, key, value, ask_on_encrypt=True, ask_on_decrypt=True, iv=b''):
n = self._convert_prime(n)
return self.call(proto.CipherKeyValue(address_n=n,
key=key,
value=value,
encrypt=True,
ask_on_encrypt=ask_on_encrypt,
ask_on_decrypt=ask_on_decrypt,
iv=iv))
@field('value')
@expect(proto.CipheredKeyValue)
def decrypt_keyvalue(self, n, key, value, ask_on_encrypt=True, ask_on_decrypt=True, iv=b''):
n = self._convert_prime(n)
return self.call(proto.CipherKeyValue(address_n=n,
key=key,
value=value,
encrypt=False,
ask_on_encrypt=ask_on_encrypt,
ask_on_decrypt=ask_on_decrypt,
iv=iv))
def _prepare_sign_tx(self, coin_name, inputs, outputs):
tx = proto.TransactionType()
tx._extend_inputs(inputs)
tx._extend_outputs(outputs)
tx._fill_missing()
txes = {}
txes[None] = tx
known_hashes = []
for inp in inputs:
if inp.prev_hash in known_hashes:
continue
if self.tx_api:
txes[inp.prev_hash] = self.tx_api.get_tx(binascii.hexlify(inp.prev_hash).decode('utf-8'))
txes[inp.prev_hash]._fill_missing()
else:
raise RuntimeError('TX_API not defined')
known_hashes.append(inp.prev_hash)
return txes
@session
def sign_tx(self, coin_name, inputs, outputs, version=None, lock_time=None, debug_processor=None):
start = time.time()
txes = self._prepare_sign_tx(coin_name, inputs, outputs)
# Prepare and send initial message
tx = proto.SignTx()
tx.inputs_count = len(inputs)
tx.outputs_count = len(outputs)
tx.coin_name = coin_name
if version is not None:
tx.version = version
if lock_time is not None:
tx.lock_time = lock_time
res = self.call(tx)
# Prepare structure for signatures
signatures = [None] * len(inputs)
serialized_tx = b''
counter = 0
while True:
counter += 1
if isinstance(res, proto.Failure):
raise CallException("Signing failed")
if not isinstance(res, proto.TxRequest):
raise CallException("Unexpected message")
# If there's some part of signed transaction, let's add it
if res.serialized and res.serialized.serialized_tx:
# log("RECEIVED PART OF SERIALIZED TX (%d BYTES)" % len(res.serialized.serialized_tx))
serialized_tx += res.serialized.serialized_tx
if res.serialized and res.serialized.signature_index is not None:
if signatures[res.serialized.signature_index] is not None:
raise ValueError("Signature for index %d already filled" % res.serialized.signature_index)
signatures[res.serialized.signature_index] = res.serialized.signature
if res.request_type == proto.RequestType.TXFINISHED:
# Device didn't ask for more information, finish workflow
break
# Device asked for one more information, let's process it.
if not res.details.tx_hash:
current_tx = txes[None]
else:
current_tx = txes[bytes(res.details.tx_hash)]
if res.request_type == proto.RequestType.TXMETA:
msg = proto.TransactionType()
msg.version = current_tx.version
msg.lock_time = current_tx.lock_time
msg.inputs_cnt = len(current_tx.inputs)
if res.details.tx_hash:
msg.outputs_cnt = len(current_tx.bin_outputs)
else:
msg.outputs_cnt = len(current_tx.outputs)
msg.extra_data_len = len(current_tx.extra_data) if current_tx.extra_data else 0
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXINPUT:
msg = proto.TransactionType()
msg._extend_inputs([current_tx.inputs[res.details.request_index], ])
if debug_processor is not None:
# If debug_processor function is provided,
# pass thru it the request and prepared response.
# This is useful for unit tests, see test_msg_signtx
msg = debug_processor(res, msg)
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXOUTPUT:
msg = proto.TransactionType()
if res.details.tx_hash:
msg._extend_bin_outputs([current_tx.bin_outputs[res.details.request_index], ])
else:
msg._extend_outputs([current_tx.outputs[res.details.request_index], ])
if debug_processor is not None:
# If debug_processor function is provided,
# pass thru it the request and prepared response.
# This is useful for unit tests, see test_msg_signtx
msg = debug_processor(res, msg)
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXEXTRADATA:
o, l = res.details.extra_data_offset, res.details.extra_data_len
msg = proto.TransactionType()
msg.extra_data = current_tx.extra_data[o:o + l]
res = self.call(proto.TxAck(tx=msg))
continue
if None in signatures:
raise RuntimeError("Some signatures are missing!")
# log("SIGNED IN %.03f SECONDS, CALLED %d MESSAGES, %d BYTES" %
# (time.time() - start, counter, len(serialized_tx)))
return (signatures, serialized_tx)
@field('message')
@expect(proto.Success)
def wipe_device(self):
ret = self.call(proto.WipeDevice())
self.init_device()
return ret
@field('message')
@expect(proto.Success)
def recovery_device(self, word_count, passphrase_protection, pin_protection, label, language, type=proto.RecoveryDeviceType.ScrambledWords, expand=False, dry_run=False):
if self.features.initialized and not dry_run:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
if word_count not in (12, 18, 24):
raise ValueError("Invalid word count. Use 12/18/24")
self.recovery_matrix_first_pass = True
self.expand = expand
if self.expand:
# optimization to load the wordlist once, instead of for each recovery word
self.mnemonic_wordlist = Mnemonic('english')
res = self.call(proto.RecoveryDevice(
word_count=int(word_count),
passphrase_protection=bool(passphrase_protection),
pin_protection=bool(pin_protection),
label=label,
language=language,
enforce_wordlist=True,
type=type,
dry_run=dry_run))
self.init_device()
return res
@field('message')
@expect(proto.Success)
@session
def reset_device(self, display_random, strength, passphrase_protection, pin_protection, label, language, u2f_counter=0, skip_backup=False):
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
# Begin with device reset workflow
msg = proto.ResetDevice(display_random=display_random,
strength=strength,
passphrase_protection=bool(passphrase_protection),
pin_protection=bool(pin_protection),
language=language,
label=label,
u2f_counter=u2f_counter,
skip_backup=bool(skip_backup))
resp = self.call(msg)
if not isinstance(resp, proto.EntropyRequest):
raise RuntimeError("Invalid response, expected EntropyRequest")
external_entropy = self._get_local_entropy()
log("Computer generated entropy: " + binascii.hexlify(external_entropy).decode())
ret = self.call(proto.EntropyAck(entropy=external_entropy))
self.init_device()
return ret
@field('message')
@expect(proto.Success)
def backup_device(self):
ret = self.call(proto.BackupDevice())
return ret
@field('message')
@expect(proto.Success)
def load_device_by_mnemonic(self, mnemonic, pin, passphrase_protection, label, language='english', skip_checksum=False, expand=False):
# Convert mnemonic to UTF8 NKFD
mnemonic = Mnemonic.normalize_string(mnemonic)
# Convert mnemonic to ASCII stream
mnemonic = mnemonic.encode('utf-8')
m = Mnemonic('english')
if expand:
mnemonic = m.expand(mnemonic)
if not skip_checksum and not m.check(mnemonic):
raise ValueError("Invalid mnemonic checksum")
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
resp = self.call(proto.LoadDevice(mnemonic=mnemonic, pin=pin,
passphrase_protection=passphrase_protection,
language=language,
label=label,
skip_checksum=skip_checksum))
self.init_device()
return resp
@field('message')
@expect(proto.Success)
def load_device_by_xprv(self, xprv, pin, passphrase_protection, label, language):
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
if xprv[0:4] not in ('xprv', 'tprv'):
raise ValueError("Unknown type of xprv")
if len(xprv) < 100 and len(xprv) > 112:
raise ValueError("Invalid length of xprv")
node = proto.HDNodeType()
data = binascii.hexlify(tools.b58decode(xprv, None))
if data[90:92] != b'00':
raise ValueError("Contain invalid private key")
checksum = binascii.hexlify(hashlib.sha256(hashlib.sha256(binascii.unhexlify(data[:156])).digest()).digest()[:4])
if checksum != data[156:]:
raise ValueError("Checksum doesn't match")
# version 0488ade4
# depth 00
# fingerprint 00000000
# child_num 00000000
# chaincode 873dff81c02f525623fd1fe5167eac3a55a049de3d314bb42ee227ffed37d508
# privkey 00e8f32e723decf4051aefac8e2c93c9c5b214313817cdb01a1494b917c8436b35
# checksum e77e9d71
node.depth = int(data[8:10], 16)
node.fingerprint = int(data[10:18], 16)
node.child_num = int(data[18:26], 16)
node.chain_code = binascii.unhexlify(data[26:90])
node.private_key = binascii.unhexlify(data[92:156]) # skip 0x00 indicating privkey
resp = self.call(proto.LoadDevice(node=node,
pin=pin,
passphrase_protection=passphrase_protection,
language=language,
label=label))
self.init_device()
return resp
@session
def firmware_update(self, fp):
if self.features.bootloader_mode is False:
raise RuntimeError("Device must be in bootloader mode")
data = fp.read()
resp = self.call(proto.FirmwareErase(length=len(data)))
if isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
# TREZORv1 method
if isinstance(resp, proto.Success):
fingerprint = hashlib.sha256(data[256:]).hexdigest()
log("Firmware fingerprint: " + fingerprint)
resp = self.call(proto.FirmwareUpload(payload=data))
if isinstance(resp, proto.Success):
return True
elif isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
raise RuntimeError("Unexpected result %s" % resp)
# TREZORv2 method
if isinstance(resp, proto.FirmwareRequest):
import pyblake2
while True:
payload = data[resp.offset:resp.offset + resp.length]
digest = pyblake2.blake2s(payload).digest()
resp = self.call(proto.FirmwareUpload(payload=payload, hash=digest))
if isinstance(resp, proto.FirmwareRequest):
continue
elif isinstance(resp, proto.Success):
return True
elif isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
raise RuntimeError("Unexpected result %s" % resp)
raise RuntimeError("Unexpected message %s" % resp)
@field('message')
@expect(proto.Success)
def self_test(self):
if self.features.bootloader_mode is False:
raise RuntimeError("Device must be in bootloader mode")
return self.call(proto.SelfTest(payload=b'\x00\xFF\x55\xAA\x66\x99\x33\xCCABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!\x00\xFF\x55\xAA\x66\x99\x33\xCC'))
class TrezorClient(ProtocolMixin, TextUIMixin, BaseClient):
pass
class TrezorClientVerbose(ProtocolMixin, TextUIMixin, VerboseWireMixin, BaseClient):
pass
class TrezorClientDebugLink(ProtocolMixin, DebugLinkMixin, VerboseWireMixin, BaseClient):
pass