1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-22 07:28:10 +00:00
trezor-firmware/crypto/aes/aes_modes.c

958 lines
30 KiB
C

/*
---------------------------------------------------------------------------
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
These subroutines implement multiple block AES modes for ECB, CBC, CFB,
OFB and CTR encryption, The code provides support for the VIA Advanced
Cryptography Engine (ACE).
NOTE: In the following subroutines, the AES contexts (ctx) must be
16 byte aligned if VIA ACE is being used
*/
#include <string.h>
#include <assert.h>
#include <stdint.h>
#include "aesopt.h"
#if defined( AES_MODES )
#if defined(__cplusplus)
extern "C"
{
#endif
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
#pragma intrinsic(memcpy)
#endif
#define BFR_BLOCKS 8
/* These values are used to detect long word alignment in order to */
/* speed up some buffer operations. This facility may not work on */
/* some machines so this define can be commented out if necessary */
#define FAST_BUFFER_OPERATIONS
#define lp32(x) ((uint32_t*)(x))
#if defined( USE_VIA_ACE_IF_PRESENT )
#include "aes_via_ace.h"
#pragma pack(16)
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
/* NOTE: These control word macros must only be used after */
/* a key has been set up because they depend on key size */
/* See the VIA ACE documentation for key type information */
/* and aes_via_ace.h for non-default NEH_KEY_TYPE values */
#ifndef NEH_KEY_TYPE
# define NEH_KEY_TYPE NEH_HYBRID
#endif
#if NEH_KEY_TYPE == NEH_LOAD
#define kd_adr(c) ((uint8_t*)(c)->ks)
#elif NEH_KEY_TYPE == NEH_GENERATE
#define kd_adr(c) ((uint8_t*)(c)->ks + (c)->inf.b[0])
#elif NEH_KEY_TYPE == NEH_HYBRID
#define kd_adr(c) ((uint8_t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
#else
#error no key type defined for VIA ACE
#endif
#else
#define aligned_array(type, name, no, stride) type name[no]
#define aligned_auto(type, name, no, stride) type name[no]
#endif
#if defined( _MSC_VER ) && _MSC_VER > 1200
#define via_cwd(cwd, ty, dir, len) \
unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
#else
#define via_cwd(cwd, ty, dir, len) \
aligned_auto(unsigned long, cwd, 4, 16); \
cwd[1] = cwd[2] = cwd[3] = 0; \
cwd[0] = neh_##dir##_##ty##_key(len)
#endif
/* test the code for detecting and setting pointer alignment */
AES_RETURN aes_test_alignment_detection(unsigned int n) /* 4 <= n <= 16 */
{ uint8_t p[16] = {0};
uint32_t i = 0, count_eq = 0, count_neq = 0;
if(n < 4 || n > 16)
return EXIT_FAILURE;
for(i = 0; i < n; ++i)
{
uint8_t *qf = ALIGN_FLOOR(p + i, n),
*qh = ALIGN_CEIL(p + i, n);
if(qh == qf)
++count_eq;
else if(qh == qf + n)
++count_neq;
else
return EXIT_FAILURE;
}
return (count_eq != 1 || count_neq != n - 1 ? EXIT_FAILURE : EXIT_SUCCESS);
}
AES_RETURN aes_mode_reset(aes_encrypt_ctx ctx[1])
{
ctx->inf.b[2] = 0;
return EXIT_SUCCESS;
}
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_encrypt_ctx ctx[1])
{ int nb = len >> AES_BLOCK_SIZE_P2;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint8_t *ksp = (uint8_t*)(ctx->ks);
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
{
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ecb_op5(ksp, cwd, ip, op, m);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
while(nb--)
{
if(aes_encrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_decrypt_ctx ctx[1])
{ int nb = len >> AES_BLOCK_SIZE_P2;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint8_t *ksp = kd_adr(ctx);
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
{
via_ecb_op5(ksp, cwd, ibuf, obuf, nb);
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ecb_op5(ksp, cwd, ip, op, m);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
while(nb--)
{
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
{ int nb = len >> AES_BLOCK_SIZE_P2;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
{
via_cbc_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cbc_op7(ksp, cwd, ip, op, m, ivp, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
if(iv != ivp)
memcpy(iv, ivp, AES_BLOCK_SIZE);
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
while(nb--)
{
lp32(iv)[0] ^= lp32(ibuf)[0];
lp32(iv)[1] ^= lp32(ibuf)[1];
lp32(iv)[2] ^= lp32(ibuf)[2];
lp32(iv)[3] ^= lp32(ibuf)[3];
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
memcpy(obuf, iv, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
# endif
while(nb--)
{
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
memcpy(obuf, iv, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
{ unsigned char tmp[AES_BLOCK_SIZE] = {0};
int nb = len >> AES_BLOCK_SIZE_P2;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint8_t *ksp = kd_adr(ctx), *ivp = iv;
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ) && !ALIGN_OFFSET( iv, 16 ))
{
via_cbc_op6(ksp, cwd, ibuf, obuf, nb, ivp);
}
else
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cbc_op6(ksp, cwd, ip, op, m, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
if(iv != ivp)
memcpy(iv, ivp, AES_BLOCK_SIZE);
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
while(nb--)
{
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
lp32(obuf)[0] ^= lp32(iv)[0];
lp32(obuf)[1] ^= lp32(iv)[1];
lp32(obuf)[2] ^= lp32(iv)[2];
lp32(obuf)[3] ^= lp32(iv)[3];
memcpy(iv, tmp, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
# endif
while(nb--)
{
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
if(aes_decrypt(ibuf, obuf, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
memcpy(iv, tmp, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb = 0;
if(b_pos) /* complete any partial block */
{
while(b_pos < AES_BLOCK_SIZE && cnt < len)
{
*obuf++ = (iv[b_pos++] ^= *ibuf++);
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m = 0;
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
{
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
while(cnt < len && b_pos < AES_BLOCK_SIZE)
{
*obuf++ = (iv[b_pos++] ^= *ibuf++);
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = (uint8_t)b_pos;
return EXIT_SUCCESS;
}
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb = 0;
if(b_pos) /* complete any partial block */
{ uint8_t t = 0;
while(b_pos < AES_BLOCK_SIZE && cnt < len)
{
t = *ibuf++;
*obuf++ = t ^ iv[b_pos];
iv[b_pos++] = t;
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m = 0;
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, dec, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
{
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf) /* input buffer is not aligned */
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
if(op != obuf) /* output buffer is not aligned */
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) &&!ALIGN_OFFSET( iv, 4 ))
while(cnt + AES_BLOCK_SIZE <= len)
{ uint32_t t = 0;
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{ uint8_t t = 0;
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{ uint8_t t = 0;
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
while(cnt < len && b_pos < AES_BLOCK_SIZE)
{
t = *ibuf++;
*obuf++ = t ^ iv[b_pos];
iv[b_pos++] = t;
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = (uint8_t)b_pos;
return EXIT_SUCCESS;
}
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb = 0;
if(b_pos) /* complete any partial block */
{
while(b_pos < AES_BLOCK_SIZE && cnt < len)
{
*obuf++ = iv[b_pos++] ^ *ibuf++;
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> AES_BLOCK_SIZE_P2) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m = 0;
uint8_t *ksp = (uint8_t*)(ctx->ks), *ivp = iv;
aligned_auto(uint8_t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
if(ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
if(ALIGN_OFFSET( iv, 16 )) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!ALIGN_OFFSET( ibuf, 16 ) && !ALIGN_OFFSET( obuf, 16 ))
{
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint8_t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint8_t *ip = NULL, *op = NULL;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (ALIGN_OFFSET( ibuf, 16 ) ? buf : ibuf);
op = (ALIGN_OFFSET( obuf, 16 ) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( iv, 4 ))
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{
if(!b_pos && aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
while(cnt < len && b_pos < AES_BLOCK_SIZE)
{
*obuf++ = iv[b_pos++] ^ *ibuf++;
cnt++;
}
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = (uint8_t)b_pos;
return EXIT_SUCCESS;
}
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
{ unsigned char *ip = NULL;
int i = 0, blen = 0, b_pos = (int)(ctx->inf.b[2]);
#if defined( USE_VIA_ACE_IF_PRESENT )
aligned_auto(uint8_t, buf, BFR_LENGTH, 16);
if(ctx->inf.b[1] == 0xff && ALIGN_OFFSET( ctx, 16 ))
return EXIT_FAILURE;
#else
uint8_t buf[BFR_LENGTH] = {0};
#endif
if(b_pos)
{
memcpy(buf, cbuf, AES_BLOCK_SIZE);
if(aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
while(b_pos < AES_BLOCK_SIZE && len)
{
*obuf++ = *ibuf++ ^ buf[b_pos++];
--len;
}
if(len)
ctr_inc(cbuf), b_pos = 0;
}
while(len)
{
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
for(i = 0, ip = buf; i < (blen >> AES_BLOCK_SIZE_P2); ++i)
{
memcpy(ip, cbuf, AES_BLOCK_SIZE);
ctr_inc(cbuf);
ip += AES_BLOCK_SIZE;
}
if(blen & (AES_BLOCK_SIZE - 1))
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{
via_cwd(cwd, hybrid, enc, 2 * ctx->inf.b[0] - 192);
via_ecb_op5((ctx->ks), cwd, buf, buf, i);
}
else
#endif
if(aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx) != EXIT_SUCCESS)
return EXIT_FAILURE;
i = 0; ip = buf;
# ifdef FAST_BUFFER_OPERATIONS
if(!ALIGN_OFFSET( ibuf, 4 ) && !ALIGN_OFFSET( obuf, 4 ) && !ALIGN_OFFSET( ip, 4 ))
while(i + AES_BLOCK_SIZE <= blen)
{
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
i += AES_BLOCK_SIZE;
ip += AES_BLOCK_SIZE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
#endif
while(i + AES_BLOCK_SIZE <= blen)
{
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
i += AES_BLOCK_SIZE;
ip += AES_BLOCK_SIZE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
while(i++ < blen)
*obuf++ = *ibuf++ ^ ip[b_pos++];
}
ctx->inf.b[2] = (uint8_t)b_pos;
return EXIT_SUCCESS;
}
void aes_ctr_cbuf_inc(unsigned char *cbuf)
{
int i = AES_BLOCK_SIZE - 1;
while (i >= 0) {
cbuf[i]++;
if (cbuf[i]) return; // if there was no overflow
i--;
}
}
#if defined(__cplusplus)
}
#endif
#endif