1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-04 04:21:01 +00:00
trezor-firmware/micropython/bootloader/messages.c
2017-06-20 19:53:35 +02:00

332 lines
10 KiB
C

#include STM32_HAL_H
#include <string.h>
#include <pb_decode.h>
#include <pb_encode.h>
#include "messages.pb.h"
#include "common.h"
#include "display.h"
#include "flash.h"
#include "usb.h"
#include "version.h"
#include "messages.h"
bool msg_parse_header(const uint8_t *buf, uint16_t *msg_id, uint32_t *msg_size)
{
if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') {
return false;
}
*msg_id = (buf[3] << 8) + buf[4];
*msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8];
return true;
}
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t buf[USB_PACKET_SIZE];
} usb_write_state;
static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
{
usb_write_state *state = (usb_write_state *)(stream->state);
size_t written = 0;
// while we have data left
while (written < count) {
size_t remaining = count - written;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(state->buf + state->packet_pos, buf + written, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(state->buf + state->packet_pos, buf + written, USB_PACKET_SIZE - state->packet_pos);
written += USB_PACKET_SIZE - state->packet_pos;
// send packet
usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 1);
// prepare new packet
state->packet_index++;
memset(state->buf, 0, USB_PACKET_SIZE);
state->buf[0] = '?';
state->packet_pos = MSG_HEADER2_LEN;
}
}
return true;
}
static void _usb_write_flush(usb_write_state *state)
{
// if packet is not filled up completely
if (state->packet_pos < USB_PACKET_SIZE) {
// pad it with zeroes
memset(state->buf + state->packet_pos, 0, USB_PACKET_SIZE - state->packet_pos);
}
// send packet
usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 1);
}
static bool _send_msg(uint8_t iface_num, uint16_t msg_id, const pb_field_t fields[], const void *msg)
{
// determine message size by serializing it into a dummy stream
pb_ostream_t sizestream = {
.callback = NULL,
.state = NULL,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL};
if (!pb_encode(&sizestream, fields, msg)) {
return false;
}
const uint32_t msg_size = sizestream.bytes_written;
usb_write_state state = {
.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf = {
'?', '#', '#',
(msg_id >> 8) & 0xFF, msg_id & 0xFF,
(msg_size >> 24) & 0xFF, (msg_size >> 16) & 0xFF, (msg_size >> 8) & 0xFF, msg_size & 0xFF,
},
};
pb_ostream_t stream = {
.callback = &_usb_write,
.state = &state,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL
};
if (!pb_encode(&stream, fields, msg)) {
return false;
}
_usb_write_flush(&state);
return true;
}
#define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default
#define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) do { msg_send.has_##FIELD = true; msg_send.FIELD = VALUE; } while (0)
// FIXME: strcpy -> strncpy
#define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) do { msg_send.has_##FIELD = true; strcpy(msg_send.FIELD, VALUE); } while (0)
#define MSG_SEND(TYPE) do { _send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send); } while (0)
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t *buf;
} usb_read_state;
static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count)
{
usb_read_state *state = (usb_read_state *)(stream->state);
size_t read = 0;
// while we have data left
while (read < count) {
size_t remaining = count - read;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(buf + read, state->buf + state->packet_pos, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(buf + read, state->buf + state->packet_pos, USB_PACKET_SIZE - state->packet_pos);
read += USB_PACKET_SIZE - state->packet_pos;
// read next packet
usb_hid_read_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100);
// prepare next packet
state->packet_index++;
state->packet_pos = MSG_HEADER2_LEN;
}
}
return true;
}
static void _usb_read_flush(usb_read_state *state)
{
(void)state;
}
static bool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, const pb_field_t fields[], void *msg)
{
usb_read_state state = {
.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf = buf
};
pb_istream_t stream = {
.callback = &_usb_read,
.state = &state,
.bytes_left = msg_size,
.errmsg = NULL
};
if (!pb_decode_noinit(&stream, fields, msg)) {
return false;
}
_usb_read_flush(&state);
return true;
}
#define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default
#define MSG_RECV_CALLBACK(FIELD, CALLBACK) do { msg_recv.FIELD.funcs.decode = &CALLBACK; } while (0)
#define MSG_RECV(TYPE) do { _recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv); } while(0)
void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
{
MSG_RECV_INIT(Initialize);
MSG_RECV(Initialize);
MSG_SEND_INIT(Features);
MSG_SEND_ASSIGN_STRING(vendor, "trezor.io");
MSG_SEND_ASSIGN_VALUE(major_version, VERSION_MAJOR);
MSG_SEND_ASSIGN_VALUE(minor_version, VERSION_MINOR);
MSG_SEND_ASSIGN_VALUE(patch_version, VERSION_PATCH);
MSG_SEND_ASSIGN_VALUE(bootloader_mode, true);
// TODO: properly detect firmware
MSG_SEND_ASSIGN_VALUE(firmware_present, false);
MSG_SEND(Features);
}
void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
{
MSG_RECV_INIT(Ping);
MSG_RECV(Ping);
MSG_SEND_INIT(Success);
MSG_SEND_ASSIGN_STRING(message, msg_recv.message);
MSG_SEND(Success);
}
static uint32_t firmware_remaining, firmware_flashed, chunk_requested;
static void progress_erase(uint16_t val)
{
display_loader(val, 0, 0xFFFF, 0, 0, 0, 0);
}
void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
{
firmware_remaining = 0;
firmware_flashed = 0;
chunk_requested = 0;
MSG_RECV_INIT(FirmwareErase);
MSG_RECV(FirmwareErase);
firmware_remaining = msg_recv.has_length ? msg_recv.length : 0;
if (firmware_remaining > 0 && firmware_remaining % 4 == 0) {
// erase flash
flash_erase_sectors(FLASH_SECTOR_FIRMWARE_START, FLASH_SECTOR_FIRMWARE_END, progress_erase);
// request new firmware
chunk_requested = (firmware_remaining > FIRMWARE_CHUNK_SIZE) ? FIRMWARE_CHUNK_SIZE : firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_VALUE(offset, 0);
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size");
MSG_SEND(Failure);
}
}
static uint32_t chunk_size = 0;
static bool _read_payload(pb_istream_t *stream, const pb_field_t *field, void **arg)
{
#define BUFSIZE 4096
uint32_t buf[BUFSIZE / sizeof(uint32_t)];
uint32_t chunk_written = 0;
chunk_size = stream->bytes_left;
while (stream->bytes_left) {
// print loader
display_loader(1000 * (firmware_flashed + chunk_written) / (firmware_flashed + firmware_remaining), 0, 0xFFFF, 0, 0, 0, 0);
memset(buf, 0xFF, sizeof(buf));
// read data
if (!pb_read(stream, (pb_byte_t *)buf, (stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) {
return false;
}
// write data
for (int i = 0; i < BUFSIZE / sizeof(uint32_t); i++) {
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, FIRMWARE_START + firmware_flashed + chunk_written + i * sizeof(uint32_t), buf[i]) != HAL_OK) {
return false;
}
}
chunk_written += BUFSIZE;
}
return true;
}
void process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
{
HAL_FLASH_Unlock();
MSG_RECV_INIT(FirmwareUpload);
MSG_RECV_CALLBACK(payload, _read_payload);
MSG_RECV(FirmwareUpload);
HAL_FLASH_Lock();
if (chunk_size != chunk_requested) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size");
MSG_SEND(Failure);
}
firmware_remaining -= chunk_requested;
firmware_flashed += chunk_requested;
if (firmware_remaining > 0) {
chunk_requested = (firmware_remaining > FIRMWARE_CHUNK_SIZE) ? FIRMWARE_CHUNK_SIZE : firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_VALUE(offset, firmware_flashed);
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
display_clear();
MSG_SEND_INIT(Success);
MSG_SEND(Success);
}
}
void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
{
// consume remaining message
int remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN)) / (USB_PACKET_SIZE - MSG_HEADER2_LEN);
for (int i = 0; i < remaining_chunks; i++) {
int r = usb_hid_read_blocking(USB_IFACE_NUM, buf, USB_PACKET_SIZE, 100);
if (r != USB_PACKET_SIZE) {
break;
}
}
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage);
MSG_SEND_ASSIGN_STRING(message, "Unexpected message");
MSG_SEND(Failure);
}