mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-11-27 01:48:17 +00:00
511 lines
16 KiB
C
511 lines
16 KiB
C
#include <string.h>
|
|
|
|
#include <pb.h>
|
|
#include <pb_decode.h>
|
|
#include <pb_encode.h>
|
|
#include "messages.pb.h"
|
|
|
|
#include "common.h"
|
|
#include "display.h"
|
|
#include "flash.h"
|
|
#include "image.h"
|
|
#include "secbool.h"
|
|
#include "usb.h"
|
|
#include "version.h"
|
|
|
|
#include "messages.h"
|
|
#include "style.h"
|
|
|
|
#define MSG_HEADER1_LEN 9
|
|
#define MSG_HEADER2_LEN 1
|
|
|
|
secbool msg_parse_header(const uint8_t *buf, uint16_t *msg_id, uint32_t *msg_size)
|
|
{
|
|
if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') {
|
|
return secfalse;
|
|
}
|
|
*msg_id = (buf[3] << 8) + buf[4];
|
|
*msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8];
|
|
return sectrue;
|
|
}
|
|
|
|
typedef struct {
|
|
uint8_t iface_num;
|
|
uint8_t packet_index;
|
|
uint8_t packet_pos;
|
|
uint8_t buf[USB_PACKET_SIZE];
|
|
} usb_write_state;
|
|
|
|
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
|
|
static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count)
|
|
{
|
|
usb_write_state *state = (usb_write_state *)(stream->state);
|
|
|
|
size_t written = 0;
|
|
// while we have data left
|
|
while (written < count) {
|
|
size_t remaining = count - written;
|
|
// if all remaining data fit into our packet
|
|
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
|
|
// append data from buf to state->buf
|
|
memcpy(state->buf + state->packet_pos, buf + written, remaining);
|
|
// advance position
|
|
state->packet_pos += remaining;
|
|
// and return
|
|
return true;
|
|
} else {
|
|
// append data that fits
|
|
memcpy(state->buf + state->packet_pos, buf + written, USB_PACKET_SIZE - state->packet_pos);
|
|
written += USB_PACKET_SIZE - state->packet_pos;
|
|
// send packet
|
|
usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100);
|
|
// prepare new packet
|
|
state->packet_index++;
|
|
memset(state->buf, 0, USB_PACKET_SIZE);
|
|
state->buf[0] = '?';
|
|
state->packet_pos = MSG_HEADER2_LEN;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _usb_write_flush(usb_write_state *state)
|
|
{
|
|
// if packet is not filled up completely
|
|
if (state->packet_pos < USB_PACKET_SIZE) {
|
|
// pad it with zeroes
|
|
memset(state->buf + state->packet_pos, 0, USB_PACKET_SIZE - state->packet_pos);
|
|
}
|
|
// send packet
|
|
usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100);
|
|
}
|
|
|
|
static secbool _send_msg(uint8_t iface_num, uint16_t msg_id, const pb_field_t fields[], const void *msg)
|
|
{
|
|
// determine message size by serializing it into a dummy stream
|
|
pb_ostream_t sizestream = {
|
|
.callback = NULL,
|
|
.state = NULL,
|
|
.max_size = SIZE_MAX,
|
|
.bytes_written = 0,
|
|
.errmsg = NULL};
|
|
if (false == pb_encode(&sizestream, fields, msg)) {
|
|
return secfalse;
|
|
}
|
|
const uint32_t msg_size = sizestream.bytes_written;
|
|
|
|
usb_write_state state = {
|
|
.iface_num = iface_num,
|
|
.packet_index = 0,
|
|
.packet_pos = MSG_HEADER1_LEN,
|
|
.buf = {
|
|
'?', '#', '#',
|
|
(msg_id >> 8) & 0xFF, msg_id & 0xFF,
|
|
(msg_size >> 24) & 0xFF, (msg_size >> 16) & 0xFF, (msg_size >> 8) & 0xFF, msg_size & 0xFF,
|
|
},
|
|
};
|
|
|
|
pb_ostream_t stream = {
|
|
.callback = &_usb_write,
|
|
.state = &state,
|
|
.max_size = SIZE_MAX,
|
|
.bytes_written = 0,
|
|
.errmsg = NULL
|
|
};
|
|
|
|
if (false == pb_encode(&stream, fields, msg)) {
|
|
return secfalse;
|
|
}
|
|
|
|
_usb_write_flush(&state);
|
|
|
|
return sectrue;
|
|
}
|
|
|
|
#define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default
|
|
#define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) { msg_send.has_##FIELD = true; msg_send.FIELD = VALUE; }
|
|
#define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) { msg_send.has_##FIELD = true; memset(msg_send.FIELD, 0, sizeof(msg_send.FIELD)); strncpy(msg_send.FIELD, VALUE, sizeof(msg_send.FIELD) - 1); }
|
|
#define MSG_SEND(TYPE) _send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send)
|
|
|
|
typedef struct {
|
|
uint8_t iface_num;
|
|
uint8_t packet_index;
|
|
uint8_t packet_pos;
|
|
uint8_t *buf;
|
|
} usb_read_state;
|
|
|
|
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
|
|
static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count)
|
|
{
|
|
usb_read_state *state = (usb_read_state *)(stream->state);
|
|
|
|
size_t read = 0;
|
|
// while we have data left
|
|
while (read < count) {
|
|
size_t remaining = count - read;
|
|
// if all remaining data fit into our packet
|
|
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
|
|
// append data from buf to state->buf
|
|
memcpy(buf + read, state->buf + state->packet_pos, remaining);
|
|
// advance position
|
|
state->packet_pos += remaining;
|
|
// and return
|
|
return true;
|
|
} else {
|
|
// append data that fits
|
|
memcpy(buf + read, state->buf + state->packet_pos, USB_PACKET_SIZE - state->packet_pos);
|
|
read += USB_PACKET_SIZE - state->packet_pos;
|
|
// read next packet
|
|
usb_hid_read_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100);
|
|
// prepare next packet
|
|
state->packet_index++;
|
|
state->packet_pos = MSG_HEADER2_LEN;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _usb_read_flush(usb_read_state *state)
|
|
{
|
|
(void)state;
|
|
}
|
|
|
|
static secbool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, const pb_field_t fields[], void *msg)
|
|
{
|
|
usb_read_state state = {
|
|
.iface_num = iface_num,
|
|
.packet_index = 0,
|
|
.packet_pos = MSG_HEADER1_LEN,
|
|
.buf = buf
|
|
};
|
|
|
|
pb_istream_t stream = {
|
|
.callback = &_usb_read,
|
|
.state = &state,
|
|
.bytes_left = msg_size,
|
|
.errmsg = NULL
|
|
};
|
|
|
|
if (false == pb_decode_noinit(&stream, fields, msg)) {
|
|
return secfalse;
|
|
}
|
|
|
|
_usb_read_flush(&state);
|
|
|
|
return sectrue;
|
|
}
|
|
|
|
#define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default
|
|
#define MSG_RECV_CALLBACK(FIELD, CALLBACK) { msg_recv.FIELD.funcs.decode = &CALLBACK; }
|
|
#define MSG_RECV(TYPE) _recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv)
|
|
|
|
void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, secbool firmware_present)
|
|
{
|
|
MSG_RECV_INIT(Initialize);
|
|
MSG_RECV(Initialize);
|
|
|
|
MSG_SEND_INIT(Features);
|
|
MSG_SEND_ASSIGN_STRING(vendor, "trezor.io");
|
|
MSG_SEND_ASSIGN_VALUE(major_version, VERSION_MAJOR);
|
|
MSG_SEND_ASSIGN_VALUE(minor_version, VERSION_MINOR);
|
|
MSG_SEND_ASSIGN_VALUE(patch_version, VERSION_PATCH);
|
|
MSG_SEND_ASSIGN_VALUE(bootloader_mode, true);
|
|
MSG_SEND_ASSIGN_VALUE(firmware_present, firmware_present);
|
|
MSG_SEND_ASSIGN_STRING(model, "T");
|
|
// TODO: pass info about installed firmware (vendor, version, etc.)
|
|
MSG_SEND(Features);
|
|
}
|
|
|
|
void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
|
|
{
|
|
MSG_RECV_INIT(Ping);
|
|
MSG_RECV(Ping);
|
|
|
|
MSG_SEND_INIT(Success);
|
|
MSG_SEND_ASSIGN_STRING(message, msg_recv.message);
|
|
MSG_SEND(Success);
|
|
}
|
|
|
|
static uint32_t firmware_remaining, firmware_block, chunk_requested;
|
|
|
|
static void progress_erase(int pos, int len)
|
|
{
|
|
display_loader(250 * pos / len, 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0);
|
|
}
|
|
|
|
void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
|
|
{
|
|
firmware_remaining = 0;
|
|
firmware_block = 0;
|
|
chunk_requested = 0;
|
|
|
|
MSG_RECV_INIT(FirmwareErase);
|
|
MSG_RECV(FirmwareErase);
|
|
|
|
firmware_remaining = msg_recv.has_length ? msg_recv.length : 0;
|
|
if (firmware_remaining > 0 && firmware_remaining % 4 == 0) {
|
|
// erase flash
|
|
const uint8_t sectors[] = {
|
|
FLASH_SECTOR_FIRMWARE_START,
|
|
7,
|
|
8,
|
|
9,
|
|
10,
|
|
FLASH_SECTOR_FIRMWARE_END,
|
|
FLASH_SECTOR_FIRMWARE_EXTRA_START,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
FLASH_SECTOR_FIRMWARE_EXTRA_END,
|
|
};
|
|
if (sectrue != flash_erase_sectors(sectors, sizeof(sectors), progress_erase)) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Could not erase flash");
|
|
MSG_SEND(Failure);
|
|
return;
|
|
}
|
|
// request new firmware
|
|
chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE) ? IMAGE_CHUNK_SIZE : firmware_remaining;
|
|
MSG_SEND_INIT(FirmwareRequest);
|
|
MSG_SEND_ASSIGN_VALUE(offset, 0);
|
|
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
|
|
MSG_SEND(FirmwareRequest);
|
|
} else {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size");
|
|
MSG_SEND(Failure);
|
|
}
|
|
}
|
|
|
|
static uint32_t chunk_size = 0;
|
|
// SRAM is unused, so we can use it for chunk buffer
|
|
uint8_t * const chunk_buffer = (uint8_t * const)0x20000000;
|
|
|
|
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
|
|
static bool _read_payload(pb_istream_t *stream, const pb_field_t *field, void **arg)
|
|
{
|
|
#define BUFSIZE 32768
|
|
|
|
if (stream->bytes_left > IMAGE_CHUNK_SIZE) {
|
|
chunk_size = 0;
|
|
return false;
|
|
}
|
|
|
|
// clear chunk buffer
|
|
memset(chunk_buffer, 0xFF, IMAGE_CHUNK_SIZE);
|
|
|
|
uint32_t chunk_written = 0;
|
|
chunk_size = stream->bytes_left;
|
|
|
|
while (stream->bytes_left) {
|
|
// update loader
|
|
display_loader(250 + 750 * (firmware_block * IMAGE_CHUNK_SIZE + chunk_written) / (firmware_block * IMAGE_CHUNK_SIZE + firmware_remaining), 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0);
|
|
// read data
|
|
if (!pb_read(stream, (pb_byte_t *)(chunk_buffer + chunk_written), (stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) {
|
|
chunk_size = 0;
|
|
return false;
|
|
}
|
|
chunk_written += BUFSIZE;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
secbool load_vendor_header_keys(const uint8_t * const data, vendor_header * const vhdr);
|
|
|
|
static int version_compare(uint32_t vera, uint32_t verb)
|
|
{
|
|
int a, b;
|
|
a = vera & 0xFF;
|
|
b = verb & 0xFF;
|
|
if (a != b) return a - b;
|
|
a = (vera >> 8) & 0xFF;
|
|
b = (verb >> 8) & 0xFF;
|
|
if (a != b) return a - b;
|
|
a = (vera >> 16) & 0xFF;
|
|
b = (verb >> 16) & 0xFF;
|
|
if (a != b) return a - b;
|
|
a = (vera >> 24) & 0xFF;
|
|
b = (verb >> 24) & 0xFF;
|
|
return a - b;
|
|
}
|
|
|
|
static secbool is_legit_upgrade(const vendor_header * const new_vhdr, const image_header * const new_hdr)
|
|
{
|
|
vendor_header current_vhdr;
|
|
if (sectrue != load_vendor_header_keys((const uint8_t *)FIRMWARE_START, ¤t_vhdr)) {
|
|
return secfalse;
|
|
}
|
|
uint8_t hash1[32], hash2[32];
|
|
vendor_keys_hash(new_vhdr, hash1);
|
|
vendor_keys_hash(¤t_vhdr, hash2);
|
|
if (0 != memcmp(hash1, hash2, 32)) {
|
|
return secfalse;
|
|
}
|
|
image_header current_hdr;
|
|
if (sectrue != load_image_header((const uint8_t *)FIRMWARE_START + current_vhdr.hdrlen, FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE, current_vhdr.vsig_m, current_vhdr.vsig_n, current_vhdr.vpub, ¤t_hdr)) {
|
|
return secfalse;
|
|
}
|
|
if (version_compare(new_hdr->version, current_hdr.fix_version) < 0) {
|
|
return secfalse;
|
|
}
|
|
return sectrue;
|
|
}
|
|
|
|
int process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
|
|
{
|
|
MSG_RECV_INIT(FirmwareUpload);
|
|
MSG_RECV_CALLBACK(payload, _read_payload);
|
|
secbool r = MSG_RECV(FirmwareUpload);
|
|
|
|
if (sectrue != r || chunk_size != chunk_requested) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size");
|
|
MSG_SEND(Failure);
|
|
return -1;
|
|
}
|
|
|
|
static image_header hdr;
|
|
|
|
uint32_t firstskip = 0;
|
|
if (firmware_block == 0) {
|
|
vendor_header vhdr;
|
|
if (sectrue != load_vendor_header_keys(chunk_buffer, &vhdr)) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Invalid vendor header");
|
|
MSG_SEND(Failure);
|
|
return -2;
|
|
}
|
|
if (sectrue != load_image_header(chunk_buffer + vhdr.hdrlen, FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE, vhdr.vsig_m, vhdr.vsig_n, vhdr.vpub, &hdr)) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Invalid firmware header");
|
|
MSG_SEND(Failure);
|
|
return -3;
|
|
}
|
|
|
|
if (sectrue != is_legit_upgrade(&vhdr, &hdr)) {
|
|
const uint8_t sectors_storage[] = {
|
|
FLASH_SECTOR_STORAGE_1,
|
|
FLASH_SECTOR_STORAGE_2,
|
|
};
|
|
ensure(flash_erase_sectors(sectors_storage, sizeof(sectors_storage), NULL), NULL);
|
|
}
|
|
|
|
firstskip = IMAGE_HEADER_SIZE + vhdr.hdrlen;
|
|
}
|
|
|
|
if (sectrue != check_single_hash(hdr.hashes + firmware_block * 32, chunk_buffer + firstskip, chunk_size - firstskip)) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk hash");
|
|
MSG_SEND(Failure);
|
|
return -4;
|
|
}
|
|
|
|
if (sectrue != flash_unlock()) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Could not unlock flash");
|
|
MSG_SEND(Failure);
|
|
return -5;
|
|
}
|
|
|
|
// TODO: fix writing to non-continous area
|
|
const uint32_t * const src = (const uint32_t * const)chunk_buffer;
|
|
for (int i = 0; i < chunk_size / sizeof(uint32_t); i++) {
|
|
if (sectrue != flash_write_word(FIRMWARE_START + firmware_block * IMAGE_CHUNK_SIZE + i * sizeof(uint32_t), src[i])) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Could not write data");
|
|
MSG_SEND(Failure);
|
|
flash_lock();
|
|
return -6;
|
|
}
|
|
}
|
|
|
|
flash_lock();
|
|
|
|
firmware_remaining -= chunk_requested;
|
|
firmware_block++;
|
|
|
|
if (firmware_remaining > 0) {
|
|
chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE) ? IMAGE_CHUNK_SIZE : firmware_remaining;
|
|
MSG_SEND_INIT(FirmwareRequest);
|
|
MSG_SEND_ASSIGN_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE);
|
|
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
|
|
MSG_SEND(FirmwareRequest);
|
|
} else {
|
|
MSG_SEND_INIT(Success);
|
|
MSG_SEND(Success);
|
|
}
|
|
return (int)firmware_remaining;
|
|
}
|
|
|
|
static void progress_wipe(int pos, int len)
|
|
{
|
|
display_loader(1000 * pos / len, 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0);
|
|
}
|
|
|
|
int process_msg_WipeDevice(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
|
|
{
|
|
const uint8_t sectors[] = {
|
|
3,
|
|
FLASH_SECTOR_STORAGE_1,
|
|
FLASH_SECTOR_STORAGE_2,
|
|
FLASH_SECTOR_FIRMWARE_START,
|
|
7,
|
|
8,
|
|
9,
|
|
10,
|
|
FLASH_SECTOR_FIRMWARE_END,
|
|
FLASH_SECTOR_UNUSED_START,
|
|
13,
|
|
14,
|
|
FLASH_SECTOR_UNUSED_END,
|
|
FLASH_SECTOR_FIRMWARE_EXTRA_START,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
FLASH_SECTOR_FIRMWARE_EXTRA_END,
|
|
};
|
|
if (sectrue != flash_erase_sectors(sectors, sizeof(sectors), progress_wipe)) {
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
|
|
MSG_SEND_ASSIGN_STRING(message, "Could not erase flash");
|
|
MSG_SEND(Failure);
|
|
return -1;
|
|
} else {
|
|
MSG_SEND_INIT(Success);
|
|
MSG_SEND(Success);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf)
|
|
{
|
|
// consume remaining message
|
|
int remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN)) / (USB_PACKET_SIZE - MSG_HEADER2_LEN);
|
|
for (int i = 0; i < remaining_chunks; i++) {
|
|
int r = usb_hid_read_blocking(USB_IFACE_NUM, buf, USB_PACKET_SIZE, 100);
|
|
if (r != USB_PACKET_SIZE) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
MSG_SEND_INIT(Failure);
|
|
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage);
|
|
MSG_SEND_ASSIGN_STRING(message, "Unexpected message");
|
|
MSG_SEND(Failure);
|
|
}
|