1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-18 05:28:40 +00:00
trezor-firmware/legacy/firmware/u2f.c
2022-05-03 21:50:50 +02:00

774 lines
21 KiB
C

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (C) 2015 Mark Bryars <mbryars@google.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ecdsa.h>
#include <string.h>
#include "bip32.h"
#include "buttons.h"
#include "config.h"
#include "crypto.h"
#include "curves.h"
#include "debug.h"
#include "gettext.h"
#include "hmac.h"
#include "layout2.h"
#include "memzero.h"
#include "nist256p1.h"
#include "rng.h"
#include "trezor.h"
#include "usb.h"
#include "util.h"
#include "u2f.h"
#include "u2f/u2f.h"
#include "u2f/u2f_hid.h"
#include "u2f/u2f_keys.h"
#include "u2f_knownapps.h"
// About 1/2 Second according to values used in protect.c
#define U2F_TIMEOUT (800000 / 2)
#define U2F_OUT_PKT_BUFFER_LEN 130
// Initialise without a cid
static uint32_t cid = 0;
// The channel ID of the last successful U2F_AUTHENTICATE check-only request.
static uint32_t last_good_auth_check_cid = 0;
// Circular Output buffer
static uint32_t u2f_out_start = 0;
static uint32_t u2f_out_end = 0;
static uint8_t u2f_out_packets[U2F_OUT_PKT_BUFFER_LEN][HID_RPT_SIZE];
#define U2F_PUBKEY_LEN 65
#define KEY_PATH_LEN 32
#define KEY_HANDLE_LEN (KEY_PATH_LEN + SHA256_DIGEST_LENGTH)
// Derivation path is m/U2F'/r'/r'/r'/r'/r'/r'/r'/r'
#define KEY_PATH_ENTRIES (KEY_PATH_LEN / sizeof(uint32_t))
// Defined as UsbSignHandler.BOGUS_APP_ID_HASH
// in
// https://github.com/google/u2f-ref-code/blob/master/u2f-chrome-extension/usbsignhandler.js#L118
#define BOGUS_APPID_CHROME "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
#define BOGUS_APPID_FIREFOX \
"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"
// Auth/Register request state machine
typedef enum {
INIT = 0,
AUTH = 10,
AUTH_PASS = 11,
REG = 20,
REG_PASS = 21
} U2F_STATE;
static U2F_STATE last_req_state = INIT;
typedef struct {
uint8_t reserved;
uint8_t appId[U2F_APPID_SIZE];
uint8_t chal[U2F_CHAL_SIZE];
uint8_t keyHandle[KEY_HANDLE_LEN];
uint8_t pubKey[U2F_PUBKEY_LEN];
} U2F_REGISTER_SIG_STR;
typedef struct {
uint8_t appId[U2F_APPID_SIZE];
uint8_t flags;
uint8_t ctr[4];
uint8_t chal[U2F_CHAL_SIZE];
} U2F_AUTHENTICATE_SIG_STR;
static uint32_t dialog_timeout = 0;
uint32_t next_cid(void) {
// extremely unlikely but hey
do {
cid = random32();
} while (cid == 0 || cid == CID_BROADCAST);
return cid;
}
// https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html#message--and-packet-structure
// states the following:
// With a packet size of 64 bytes (max for full-speed devices), this means that
// the maximum message payload length is 64 - 7 + 128 * (64 - 5) = 7609 bytes.
#define U2F_MAXIMUM_PAYLOAD_LENGTH 7609
typedef struct {
uint8_t buf[U2F_MAXIMUM_PAYLOAD_LENGTH];
uint8_t *buf_ptr;
uint32_t len;
uint8_t seq;
uint8_t cmd;
} U2F_ReadBuffer;
U2F_ReadBuffer *reader;
void u2fhid_read(char tiny, const U2FHID_FRAME *f) {
// Always handle init packets directly
if (f->init.cmd == U2FHID_INIT) {
u2fhid_init(f);
if (tiny && reader && f->cid == cid) {
// abort current channel
reader->cmd = 0;
reader->len = 0;
reader->seq = 255;
}
return;
}
if (tiny) {
// read continue packet
if (reader == 0 || cid != f->cid) {
send_u2fhid_error(f->cid, ERR_CHANNEL_BUSY);
return;
}
if ((f->type & TYPE_INIT) && reader->seq == 255) {
u2fhid_init_cmd(f);
return;
}
if (reader->seq != f->cont.seq) {
send_u2fhid_error(f->cid, ERR_INVALID_SEQ);
reader->cmd = 0;
reader->len = 0;
reader->seq = 255;
return;
}
// check out of bounds
if ((reader->buf_ptr - reader->buf) >= (signed)reader->len ||
(reader->buf_ptr + sizeof(f->cont.data) - reader->buf) >
(signed)sizeof(reader->buf))
return;
reader->seq++;
memcpy(reader->buf_ptr, f->cont.data, sizeof(f->cont.data));
reader->buf_ptr += sizeof(f->cont.data);
return;
}
u2fhid_read_start(f);
}
void u2fhid_init_cmd(const U2FHID_FRAME *f) {
reader->seq = 0;
reader->buf_ptr = reader->buf;
reader->len = MSG_LEN(*f);
reader->cmd = f->type;
memcpy(reader->buf_ptr, f->init.data, sizeof(f->init.data));
reader->buf_ptr += sizeof(f->init.data);
cid = f->cid;
}
void u2fhid_read_start(const U2FHID_FRAME *f) {
U2F_ReadBuffer readbuffer = {0};
memzero(&readbuffer, sizeof(readbuffer));
if (!(f->type & TYPE_INIT)) {
return;
}
// Broadcast is reserved for init
if (f->cid == CID_BROADCAST || f->cid == 0) {
send_u2fhid_error(f->cid, ERR_INVALID_CID);
return;
}
if ((unsigned)MSG_LEN(*f) > sizeof(reader->buf)) {
send_u2fhid_error(f->cid, ERR_INVALID_LEN);
return;
}
reader = &readbuffer;
u2fhid_init_cmd(f);
usbTiny(1);
for (;;) {
// Do we need to wait for more data
while ((reader->buf_ptr - reader->buf) < (signed)reader->len) {
uint8_t lastseq = reader->seq;
uint8_t lastcmd = reader->cmd;
int counter = U2F_TIMEOUT;
while (reader->seq == lastseq && reader->cmd == lastcmd) {
if (counter-- == 0) {
// timeout
send_u2fhid_error(cid, ERR_MSG_TIMEOUT);
cid = 0;
reader = 0;
usbTiny(0);
layoutHome();
return;
}
usbPoll();
}
}
// We have all the data
switch (reader->cmd) {
case 0:
// message was aborted by init
break;
case U2FHID_PING:
u2fhid_ping(reader->buf, reader->len);
break;
case U2FHID_MSG:
u2fhid_msg((APDU *)reader->buf, reader->len);
break;
case U2FHID_WINK:
u2fhid_wink(reader->buf, reader->len);
break;
default:
send_u2fhid_error(cid, ERR_INVALID_CMD);
break;
}
// wait for next command/button press
reader->cmd = 0;
reader->seq = 255;
while (dialog_timeout > 0 && reader->cmd == 0) {
dialog_timeout--;
usbPoll(); // may trigger new request
buttonUpdate();
if (button.YesUp && (last_req_state == AUTH || last_req_state == REG)) {
last_req_state++;
// standard requires to remember button press for 10 seconds.
dialog_timeout = 10 * U2F_TIMEOUT;
}
}
if (reader->cmd == 0) {
last_req_state = INIT;
cid = 0;
reader = 0;
usbTiny(0);
layoutHome();
return;
}
}
}
void u2fhid_ping(const uint8_t *buf, uint32_t len) {
debugLog(0, "", "u2fhid_ping");
send_u2fhid_msg(U2FHID_PING, buf, len);
}
void u2fhid_wink(const uint8_t *buf, uint32_t len) {
debugLog(0, "", "u2fhid_wink");
(void)buf;
if (len > 0) return send_u2fhid_error(cid, ERR_INVALID_LEN);
if (dialog_timeout > 0) dialog_timeout = U2F_TIMEOUT;
U2FHID_FRAME f = {0};
memzero(&f, sizeof(f));
f.cid = cid;
f.init.cmd = U2FHID_WINK;
f.init.bcntl = 0;
queue_u2f_pkt(&f);
}
void u2fhid_init(const U2FHID_FRAME *in) {
const U2FHID_INIT_REQ *init_req = (const U2FHID_INIT_REQ *)&in->init.data;
U2FHID_FRAME f = {0};
U2FHID_INIT_RESP resp = {0};
memzero(&resp, sizeof(resp));
debugLog(0, "", "u2fhid_init");
if (in->cid == 0) {
send_u2fhid_error(in->cid, ERR_INVALID_CID);
return;
}
memzero(&f, sizeof(f));
f.cid = in->cid;
f.init.cmd = U2FHID_INIT;
f.init.bcnth = 0;
f.init.bcntl = sizeof(resp);
memcpy(resp.nonce, init_req->nonce, sizeof(init_req->nonce));
resp.cid = in->cid == CID_BROADCAST ? next_cid() : in->cid;
resp.versionInterface = U2FHID_IF_VERSION;
resp.versionMajor = VERSION_MAJOR;
resp.versionMinor = VERSION_MINOR;
resp.versionBuild = VERSION_PATCH;
resp.capFlags = CAPFLAG_WINK;
memcpy(&f.init.data, &resp, sizeof(resp));
queue_u2f_pkt(&f);
}
void queue_u2f_pkt(const U2FHID_FRAME *u2f_pkt) {
// debugLog(0, "", "u2f_write_pkt");
uint32_t next = (u2f_out_end + 1) % U2F_OUT_PKT_BUFFER_LEN;
if (u2f_out_start == next) {
debugLog(0, "", "u2f_write_pkt full");
return; // Buffer full :(
}
memcpy(u2f_out_packets[u2f_out_end], u2f_pkt, HID_RPT_SIZE);
u2f_out_end = next;
}
uint8_t *u2f_out_data(void) {
if (u2f_out_start == u2f_out_end) return NULL; // No data
// debugLog(0, "", "u2f_out_data");
uint32_t t = u2f_out_start;
u2f_out_start = (u2f_out_start + 1) % U2F_OUT_PKT_BUFFER_LEN;
return u2f_out_packets[t];
}
void u2fhid_msg(const APDU *a, uint32_t len) {
if ((APDU_LEN(*a) + sizeof(APDU)) > len) {
debugLog(0, "", "BAD APDU LENGTH");
debugInt(APDU_LEN(*a));
debugInt(len);
return;
}
if (a->cla != 0) {
send_u2f_error(U2F_SW_CLA_NOT_SUPPORTED);
return;
}
switch (a->ins) {
case U2F_REGISTER:
u2f_register(a);
break;
case U2F_AUTHENTICATE:
u2f_authenticate(a);
break;
case U2F_VERSION:
u2f_version(a);
break;
default:
debugLog(0, "", "u2f unknown cmd");
send_u2f_error(U2F_SW_INS_NOT_SUPPORTED);
}
}
void send_u2fhid_msg(const uint8_t cmd, const uint8_t *data,
const uint32_t len) {
if (len > U2F_MAXIMUM_PAYLOAD_LENGTH) {
debugLog(0, "", "send_u2fhid_msg failed");
return;
}
U2FHID_FRAME f = {0};
uint8_t *p = (uint8_t *)data;
uint32_t l = len;
uint32_t psz = 0;
uint8_t seq = 0;
// debugLog(0, "", "send_u2fhid_msg");
memzero(&f, sizeof(f));
f.cid = cid;
f.init.cmd = cmd;
f.init.bcnth = len >> 8;
f.init.bcntl = len & 0xff;
// Init packet
psz = MIN(sizeof(f.init.data), l);
memcpy(f.init.data, p, psz);
queue_u2f_pkt(&f);
l -= psz;
p += psz;
// Cont packet(s)
for (; l > 0; l -= psz, p += psz) {
// debugLog(0, "", "send_u2fhid_msg con");
memzero(&f.cont.data, sizeof(f.cont.data));
f.cont.seq = seq++;
psz = MIN(sizeof(f.cont.data), l);
memcpy(f.cont.data, p, psz);
queue_u2f_pkt(&f);
}
if (data + len != p) {
debugLog(0, "", "send_u2fhid_msg is bad");
debugInt(data + len - p);
}
}
void send_u2fhid_error(uint32_t fcid, uint8_t err) {
U2FHID_FRAME f = {0};
memzero(&f, sizeof(f));
f.cid = fcid;
f.init.cmd = U2FHID_ERROR;
f.init.bcntl = 1;
f.init.data[0] = err;
queue_u2f_pkt(&f);
}
void u2f_version(const APDU *a) {
if (APDU_LEN(*a) != 0) {
debugLog(0, "", "u2f version - badlen");
send_u2f_error(U2F_SW_WRONG_LENGTH);
return;
}
// INCLUDES SW_NO_ERROR
static const uint8_t version_response[] = {'U', '2', 'F', '_',
'V', '2', 0x90, 0x00};
debugLog(0, "", "u2f version");
send_u2f_msg(version_response, sizeof(version_response));
}
static void getReadableAppId(const uint8_t appid[U2F_APPID_SIZE],
const char **appname) {
static char buf[8 + 2 + 8 + 1];
for (unsigned int i = 0; i < sizeof(u2f_well_known) / sizeof(U2FWellKnown);
i++) {
if (memcmp(appid, u2f_well_known[i].appid, U2F_APPID_SIZE) == 0) {
*appname = u2f_well_known[i].appname;
return;
}
}
data2hex(appid, 4, &buf[0]);
buf[8] = buf[9] = '.';
data2hex(appid + (U2F_APPID_SIZE - 4), 4, &buf[10]);
*appname = buf;
}
static const HDNode *getDerivedNode(uint32_t *address_n,
size_t address_n_count) {
static CONFIDENTIAL HDNode node;
if (!config_getU2FRoot(&node)) {
layoutHome();
debugLog(0, "", "ERR: Device not init");
return 0;
}
if (!address_n || address_n_count == 0) {
return &node;
}
for (size_t i = 0; i < address_n_count; i++) {
if (hdnode_private_ckd(&node, address_n[i]) == 0) {
layoutHome();
debugLog(0, "", "ERR: Derive private failed");
return 0;
}
}
return &node;
}
static const HDNode *generateKeyHandle(const uint8_t app_id[],
uint8_t key_handle[]) {
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN] = {0};
// Derivation path is m/U2F'/r'/r'/r'/r'/r'/r'/r'/r'
uint32_t key_path[KEY_PATH_ENTRIES] = {0};
for (uint32_t i = 0; i < KEY_PATH_ENTRIES; i++) {
// high bit for hardened keys
key_path[i] = PATH_HARDENED | random32();
}
// First half of keyhandle is key_path
memcpy(key_handle, key_path, KEY_PATH_LEN);
// prepare keypair from /random data
const HDNode *node = getDerivedNode(key_path, KEY_PATH_ENTRIES);
if (!node) return NULL;
// For second half of keyhandle
// Signature of app_id and random data
memcpy(&keybase[0], app_id, U2F_APPID_SIZE);
memcpy(&keybase[U2F_APPID_SIZE], key_handle, KEY_PATH_LEN);
hmac_sha256(node->private_key, sizeof(node->private_key), keybase,
sizeof(keybase), &key_handle[KEY_PATH_LEN]);
// Done!
return node;
}
static const HDNode *validateKeyHandle(const uint8_t app_id[],
const uint8_t key_handle[]) {
uint32_t key_path[KEY_PATH_ENTRIES] = {0};
memcpy(key_path, key_handle, KEY_PATH_LEN);
for (unsigned int i = 0; i < KEY_PATH_ENTRIES; i++) {
// check high bit for hardened keys
if (!(key_path[i] & PATH_HARDENED)) {
return NULL;
}
}
const HDNode *node = getDerivedNode(key_path, KEY_PATH_ENTRIES);
if (!node) return NULL;
uint8_t keybase[U2F_APPID_SIZE + KEY_PATH_LEN] = {0};
memcpy(&keybase[0], app_id, U2F_APPID_SIZE);
memcpy(&keybase[U2F_APPID_SIZE], key_handle, KEY_PATH_LEN);
uint8_t hmac[SHA256_DIGEST_LENGTH] = {0};
hmac_sha256(node->private_key, sizeof(node->private_key), keybase,
sizeof(keybase), hmac);
if (memcmp(&key_handle[KEY_PATH_LEN], hmac, SHA256_DIGEST_LENGTH) != 0)
return NULL;
// Done!
return node;
}
void u2f_register(const APDU *a) {
static U2F_REGISTER_REQ last_req;
const U2F_REGISTER_REQ *req = (U2F_REGISTER_REQ *)a->data;
if (!config_isInitialized()) {
send_u2f_error(U2F_SW_CONDITIONS_NOT_SATISFIED);
return;
}
// Validate basic request parameters
debugLog(0, "", "u2f register");
if (APDU_LEN(*a) != sizeof(U2F_REGISTER_REQ)) {
debugLog(0, "", "u2f register - badlen");
send_u2f_error(U2F_SW_WRONG_LENGTH);
return;
}
// If this request is different from last request, reset state machine
if (memcmp(&last_req, req, sizeof(last_req)) != 0) {
memcpy(&last_req, req, sizeof(last_req));
last_req_state = INIT;
}
// First Time request, return not present and display request dialog
if (last_req_state == INIT) {
// error: testof-user-presence is required
buttonUpdate(); // Clear button state
if (0 == memcmp(req->appId, BOGUS_APPID_CHROME, U2F_APPID_SIZE) ||
0 == memcmp(req->appId, BOGUS_APPID_FIREFOX, U2F_APPID_SIZE)) {
if (cid == last_good_auth_check_cid) {
layoutDialog(&bmp_icon_warning, NULL, _("OK"), NULL,
_("Already registered."), NULL, _("This U2F device is"),
_("already registered"), _("in this application."), NULL);
} else {
layoutDialog(&bmp_icon_warning, NULL, _("OK"), NULL,
_("Not registered."), NULL, _("Another U2F device"),
_("was used to register"), _("in this application."),
NULL);
}
} else {
const char *appname = NULL;
getReadableAppId(req->appId, &appname);
layoutU2FDialog(_("Register"), appname);
}
last_req_state = REG;
}
// Still awaiting Keypress
if (last_req_state == REG) {
// error: testof-user-presence is required
send_u2f_error(U2F_SW_CONDITIONS_NOT_SATISFIED);
dialog_timeout = U2F_TIMEOUT;
return;
}
// Buttons said yes
if (last_req_state == REG_PASS) {
uint8_t data[sizeof(U2F_REGISTER_RESP) + 2] = {0};
U2F_REGISTER_RESP *resp = (U2F_REGISTER_RESP *)&data;
memzero(data, sizeof(data));
resp->registerId = U2F_REGISTER_ID;
resp->keyHandleLen = KEY_HANDLE_LEN;
// Generate keypair for this appId
const HDNode *node =
generateKeyHandle(req->appId, (uint8_t *)&resp->keyHandleCertSig);
if (!node) {
debugLog(0, "", "getDerivedNode Fail");
send_u2f_error(U2F_SW_WRONG_DATA); // error:bad key handle
return;
}
if (ecdsa_get_public_key65(node->curve->params, node->private_key,
(uint8_t *)&resp->pubKey) != 0) {
send_u2f_error(U2F_SW_WRONG_DATA);
return;
}
memcpy(resp->keyHandleCertSig + resp->keyHandleLen, U2F_ATT_CERT,
sizeof(U2F_ATT_CERT));
uint8_t sig[64] = {0};
U2F_REGISTER_SIG_STR sig_base = {0};
sig_base.reserved = 0;
memcpy(sig_base.appId, req->appId, U2F_APPID_SIZE);
memcpy(sig_base.chal, req->chal, U2F_CHAL_SIZE);
memcpy(sig_base.keyHandle, &resp->keyHandleCertSig, KEY_HANDLE_LEN);
memcpy(sig_base.pubKey, &resp->pubKey, U2F_PUBKEY_LEN);
if (ecdsa_sign(&nist256p1, HASHER_SHA2, U2F_ATT_PRIV_KEY,
(uint8_t *)&sig_base, sizeof(sig_base), sig, NULL,
NULL) != 0) {
send_u2f_error(U2F_SW_WRONG_DATA);
return;
}
// Where to write the signature in the response
uint8_t *resp_sig =
resp->keyHandleCertSig + resp->keyHandleLen + sizeof(U2F_ATT_CERT);
// Convert to der for the response
const uint8_t sig_len = ecdsa_sig_to_der(sig, resp_sig);
// Append success bytes
memcpy(resp->keyHandleCertSig + resp->keyHandleLen + sizeof(U2F_ATT_CERT) +
sig_len,
"\x90\x00", 2);
int l = 1 /* registerId */ + U2F_PUBKEY_LEN + 1 /* keyhandleLen */ +
resp->keyHandleLen + sizeof(U2F_ATT_CERT) + sig_len + 2;
last_req_state = INIT;
dialog_timeout = 0;
send_u2f_msg(data, l);
return;
}
// Didn't expect to get here
dialog_timeout = 0;
}
void u2f_authenticate(const APDU *a) {
const U2F_AUTHENTICATE_REQ *req = (U2F_AUTHENTICATE_REQ *)a->data;
static U2F_AUTHENTICATE_REQ last_req;
if (!config_isInitialized()) {
send_u2f_error(U2F_SW_CONDITIONS_NOT_SATISFIED);
return;
}
if (APDU_LEN(*a) < 64) { /// FIXME: decent value
debugLog(0, "", "u2f authenticate - badlen");
send_u2f_error(U2F_SW_WRONG_LENGTH);
return;
}
if (req->keyHandleLen != KEY_HANDLE_LEN) {
debugLog(0, "", "u2f auth - bad keyhandle len");
send_u2f_error(U2F_SW_WRONG_DATA); // error:bad key handle
return;
}
const HDNode *node = validateKeyHandle(req->appId, req->keyHandle);
if (!node) {
debugLog(0, "", "u2f auth - bad keyhandle len");
send_u2f_error(U2F_SW_WRONG_DATA); // error:bad key handle
return;
}
if (a->p1 == U2F_AUTH_CHECK_ONLY) {
debugLog(0, "", "u2f authenticate check");
// This is a success for a good keyhandle
// A failed check would have happened earlier
// error: testof-user-presence is required
send_u2f_error(U2F_SW_CONDITIONS_NOT_SATISFIED);
last_good_auth_check_cid = cid;
return;
}
if (a->p1 != U2F_AUTH_ENFORCE) {
debugLog(0, "", "u2f authenticate unknown");
// error:bad key handle
send_u2f_error(U2F_SW_WRONG_DATA);
return;
}
debugLog(0, "", "u2f authenticate enforce");
if (memcmp(&last_req, req, sizeof(last_req)) != 0) {
memcpy(&last_req, req, sizeof(last_req));
last_req_state = INIT;
}
if (last_req_state == INIT) {
// error: testof-user-presence is required
buttonUpdate(); // Clear button state
const char *appname = NULL;
getReadableAppId(req->appId, &appname);
layoutU2FDialog(_("Authenticate"), appname);
last_req_state = AUTH;
}
// Awaiting Keypress
if (last_req_state == AUTH) {
// error: testof-user-presence is required
send_u2f_error(U2F_SW_CONDITIONS_NOT_SATISFIED);
dialog_timeout = U2F_TIMEOUT;
return;
}
// Buttons said yes
if (last_req_state == AUTH_PASS) {
uint8_t buf[(sizeof(U2F_AUTHENTICATE_RESP)) + 2] = {0};
U2F_AUTHENTICATE_RESP *resp = (U2F_AUTHENTICATE_RESP *)&buf;
const uint32_t ctr = config_nextU2FCounter();
resp->flags = U2F_AUTH_FLAG_TUP;
resp->ctr[0] = ctr >> 24 & 0xff;
resp->ctr[1] = ctr >> 16 & 0xff;
resp->ctr[2] = ctr >> 8 & 0xff;
resp->ctr[3] = ctr & 0xff;
// Build and sign response
U2F_AUTHENTICATE_SIG_STR sig_base = {0};
uint8_t sig[64] = {0};
memcpy(sig_base.appId, req->appId, U2F_APPID_SIZE);
sig_base.flags = resp->flags;
memcpy(sig_base.ctr, resp->ctr, 4);
memcpy(sig_base.chal, req->chal, U2F_CHAL_SIZE);
if (ecdsa_sign(&nist256p1, HASHER_SHA2, node->private_key,
(uint8_t *)&sig_base, sizeof(sig_base), sig, NULL,
NULL) != 0) {
send_u2f_error(U2F_SW_WRONG_DATA);
return;
}
// Copy DER encoded signature into response
const uint8_t sig_len = ecdsa_sig_to_der(sig, resp->sig);
// Append OK
memcpy(buf + sizeof(U2F_AUTHENTICATE_RESP) - U2F_MAX_EC_SIG_SIZE + sig_len,
"\x90\x00", 2);
last_req_state = INIT;
dialog_timeout = 0;
send_u2f_msg(
buf, sizeof(U2F_AUTHENTICATE_RESP) - U2F_MAX_EC_SIG_SIZE + sig_len + 2);
}
}
void send_u2f_error(const uint16_t err) {
uint8_t data[2] = {0};
data[0] = err >> 8 & 0xFF;
data[1] = err & 0xFF;
send_u2f_msg(data, 2);
}
void send_u2f_msg(const uint8_t *data, const uint32_t len) {
send_u2fhid_msg(U2FHID_MSG, data, len);
}