1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-25 06:40:58 +00:00
trezor-firmware/embed/trezorhal/usb_vcp-impl.h
2018-02-26 14:07:37 +01:00

434 lines
15 KiB
C

/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Communications Device Class Code (bFunctionClass, bInterfaceClass)
#define USB_CLASS_CDC 0x02
// Data Interface Class Code (bInterfaceClass)
#define USB_CLASS_DATA 0x0A
// Class Subclass Code (bFunctionSubClass, bInterfaceSubClass)
#define USB_CDC_SUBCLASS_ACM 0x02
// Communications Interface Class Control Protocol Codes (bFunctionProtocol, bInterfaceProtocol)
#define USB_CDC_PROTOCOL_AT 0x01
// Descriptor Types (bDescriptorType)
#define USB_DESC_TYPE_ASSOCIATION 0x0B
#define USB_DESC_TYPE_CS_INTERACE 0x24
// Descriptor SubTypes (bDescriptorSubtype)
#define USB_DESC_TYPE_HEADER 0x00
#define USB_DESC_TYPE_CM 0x01
#define USB_DESC_TYPE_ACM 0x02
#define USB_DESC_TYPE_UNION 0x06
// Data Phase Transfer Direction (bmRequest)
#define USB_REQ_DIR_MASK 0x80
#define USB_REQ_DIR_H2D 0x00
#define USB_REQ_DIR_D2H 0x80
// Class-Specific Request Codes for PSTN subclasses
#define USB_CDC_SET_LINE_CODING 0x20
#define USB_CDC_GET_LINE_CODING 0x21
#define USB_CDC_SET_CONTROL_LINE_STATE 0x22
/* usb_vcp_add adds and configures new USB VCP interface according to
* configuration options passed in `info`. */
secbool usb_vcp_add(const usb_vcp_info_t *info) {
usb_iface_t *iface = usb_get_iface(info->iface_num);
if (iface == NULL) {
return secfalse; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_DISABLED) {
return secfalse; // Interface is already enabled
}
usb_vcp_descriptor_block_t *d = usb_desc_alloc_iface(sizeof(usb_vcp_descriptor_block_t));
if (d == NULL) {
return secfalse; // Not enough space in the configuration descriptor
}
if ((info->ep_cmd & USB_EP_DIR_MASK) != USB_EP_DIR_IN) {
return secfalse; // IN CMD EP is invalid
}
if ((info->ep_in & USB_EP_DIR_MASK) != USB_EP_DIR_IN) {
return secfalse; // IN EP is invalid
}
if ((info->ep_out & USB_EP_DIR_MASK) != USB_EP_DIR_OUT) {
return secfalse; // OUT EP is invalid
}
if ((info->rx_buffer_len == 0) || (info->rx_buffer_len & (info->rx_buffer_len - 1)) != 0) {
return secfalse; // Capacity needs to be a power of 2
}
if ((info->tx_buffer_len == 0) || (info->tx_buffer_len & (info->tx_buffer_len - 1)) != 0) {
return secfalse; // Capacity needs to be a power of 2
}
if (info->rx_buffer == NULL) {
return secfalse;
}
if (info->rx_packet == NULL) {
return secfalse;
}
if (info->tx_buffer == NULL) {
return secfalse;
}
if (info->tx_packet == NULL) {
return secfalse;
}
// Interface association descriptor
d->assoc.bLength = sizeof(usb_interface_assoc_descriptor_t);
d->assoc.bDescriptorType = USB_DESC_TYPE_ASSOCIATION;
d->assoc.bFirstInterface = info->iface_num;
d->assoc.bInterfaceCount = 2;
d->assoc.bFunctionClass = USB_CLASS_CDC;
d->assoc.bFunctionSubClass = USB_CDC_SUBCLASS_ACM;
d->assoc.bFunctionProtocol = USB_CDC_PROTOCOL_AT;
d->assoc.iFunction = 0;
// Interface descriptor
d->iface_cdc.bLength = sizeof(usb_interface_descriptor_t);
d->iface_cdc.bDescriptorType = USB_DESC_TYPE_INTERFACE;
d->iface_cdc.bInterfaceNumber = info->iface_num;
d->iface_cdc.bAlternateSetting = 0;
d->iface_cdc.bNumEndpoints = 1;
d->iface_cdc.bInterfaceClass = USB_CLASS_CDC;
d->iface_cdc.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM;
d->iface_cdc.bInterfaceProtocol = USB_CDC_PROTOCOL_AT;
d->iface_cdc.iInterface = USBD_IDX_INTERFACE_STR;
// Header Functional Descriptor
d->fheader.bFunctionLength = sizeof(usb_vcp_header_descriptor_t);
d->fheader.bDescriptorType = USB_DESC_TYPE_CS_INTERACE;
d->fheader.bDescriptorSubtype = USB_DESC_TYPE_HEADER;
d->fheader.bcdCDC = 0x1001; // USB Class Definitions for Communication Devices Specification release number.
// Call Management Functional Descriptor
d->fcm.bFunctionLength = sizeof(usb_vcp_cm_descriptor_t);
d->fcm.bDescriptorType = USB_DESC_TYPE_CS_INTERACE;
d->fcm.bDescriptorSubtype = USB_DESC_TYPE_CM;
// Device sends/receives call management information only over the Communication Class interface.
// Device does not handle call management itself.
d->fcm.bmCapabilities = 0x00;
d->fcm.bDataInterface = info->data_iface_num;
// ACM Functional Descriptor
d->facm.bFunctionLength = sizeof(usb_vcp_acm_descriptor_t);
d->facm.bDescriptorType = USB_DESC_TYPE_CS_INTERACE;
d->facm.bDescriptorSubtype = USB_DESC_TYPE_ACM;
// Device supports the request combination of Set_Line_Coding, Set_Control_Line_State,
// Get_Line_Coding, and the notification Serial_State.
d->facm.bmCapabilities = 0x02;
// Union Functional Descriptor
d->funion.bFunctionLength = sizeof(usb_vcp_union_descriptor_t);
d->funion.bDescriptorType = USB_DESC_TYPE_CS_INTERACE;
d->funion.bDescriptorSubtype = USB_DESC_TYPE_UNION;
d->funion.bControlInterface = info->iface_num;
d->funion.bSubordinateInterface0 = info->data_iface_num;
// IN CMD endpoint (control)
d->ep_cmd.bLength = sizeof(usb_endpoint_descriptor_t);
d->ep_cmd.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_cmd.bEndpointAddress = info->ep_cmd;
d->ep_cmd.bmAttributes = USBD_EP_TYPE_INTR;
d->ep_cmd.wMaxPacketSize = USB_CDC_MAX_CMD_PACKET_LEN;
d->ep_cmd.bInterval = info->polling_interval;
// Interface descriptor
d->iface_data.bLength = sizeof(usb_interface_descriptor_t);
d->iface_data.bDescriptorType = USB_DESC_TYPE_INTERFACE;
d->iface_data.bInterfaceNumber = info->data_iface_num;
d->iface_data.bAlternateSetting = 0;
d->iface_data.bNumEndpoints = 2;
d->iface_data.bInterfaceClass = USB_CLASS_DATA;
d->iface_data.bInterfaceSubClass = 0;
d->iface_data.bInterfaceProtocol = 0;
d->iface_data.iInterface = USBD_IDX_INTERFACE_STR;
// OUT endpoint (receiving)
d->ep_out.bLength = sizeof(usb_endpoint_descriptor_t);
d->ep_out.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_out.bEndpointAddress = info->ep_out;
d->ep_out.bmAttributes = USBD_EP_TYPE_BULK;
d->ep_out.wMaxPacketSize = info->max_packet_len;
d->ep_out.bInterval = 0;
// IN endpoint (sending)
d->ep_in.bLength = sizeof(usb_endpoint_descriptor_t);
d->ep_in.bDescriptorType = USB_DESC_TYPE_ENDPOINT;
d->ep_in.bEndpointAddress = info->ep_in;
d->ep_in.bmAttributes = USBD_EP_TYPE_BULK;
d->ep_in.wMaxPacketSize = info->max_packet_len;
d->ep_in.bInterval = 0;
// Config descriptor
usb_desc_add_iface(sizeof(usb_vcp_descriptor_block_t));
usb_config_desc->bNumInterfaces++; // usb_vcp_descriptor_block_t contains 2 interfaces
// Interface state
iface->type = USB_IFACE_TYPE_VCP;
iface->vcp.desc_block = d;
iface->vcp.rx_ring.buf = info->rx_buffer;
iface->vcp.rx_ring.cap = info->rx_buffer_len;
iface->vcp.rx_ring.read = 0;
iface->vcp.rx_ring.write = 0;
iface->vcp.tx_ring.buf = info->tx_buffer;
iface->vcp.tx_ring.cap = info->tx_buffer_len;
iface->vcp.tx_ring.read = 0;
iface->vcp.tx_ring.write = 0;
iface->vcp.rx_packet = info->rx_packet;
iface->vcp.tx_packet = info->tx_packet;
iface->vcp.rx_intr_fn = info->rx_intr_fn;
iface->vcp.rx_intr_byte = info->rx_intr_byte;
iface->vcp.ep_cmd = info->ep_cmd;
iface->vcp.ep_in = info->ep_in;
iface->vcp.ep_out = info->ep_out;
iface->vcp.max_packet_len = info->max_packet_len;
iface->vcp.ep_in_is_idle = 1;
return sectrue;
}
static inline size_t ring_length(usb_rbuf_t *b) {
return (b->write - b->read);
}
static inline int ring_empty(usb_rbuf_t *b) {
return ring_length(b) == 0;
}
static inline int ring_full(usb_rbuf_t *b) {
return ring_length(b) == b->cap;
}
secbool usb_vcp_can_read(uint8_t iface_num) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return secfalse; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return secfalse; // Invalid interface type
}
if (ring_empty(&iface->vcp.rx_ring)) {
return secfalse; // Nothing in the rx buffer
}
return sectrue;
}
secbool usb_vcp_can_write(uint8_t iface_num) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return secfalse; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return secfalse; // Invalid interface type
}
if (ring_full(&iface->vcp.tx_ring)) {
return secfalse; // Tx ring buffer is full
}
return sectrue;
}
int usb_vcp_read(uint8_t iface_num, uint8_t *buf, uint32_t len) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return -1; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return -2; // Interface interface type
}
usb_vcp_state_t *state = &iface->vcp;
// Read from the rx ring buffer
usb_rbuf_t *b = &state->rx_ring;
size_t mask = b->cap - 1;
size_t i;
for (i = 0; (i < len) && !ring_empty(b); i++) {
buf[i] = b->buf[b->read & mask];
b->read++;
}
return i;
}
int usb_vcp_write(uint8_t iface_num, const uint8_t *buf, uint32_t len) {
usb_iface_t *iface = usb_get_iface(iface_num);
if (iface == NULL) {
return -1; // Invalid interface number
}
if (iface->type != USB_IFACE_TYPE_VCP) {
return -2; // Interface interface type
}
usb_vcp_state_t *state = &iface->vcp;
// Write into the tx ring buffer
usb_rbuf_t *b = &state->tx_ring;
size_t mask = b->cap - 1;
size_t i;
for (i = 0; (i < len) && !ring_full(b); i++) {
b->buf[b->write & mask] = buf[i];
b->write++;
}
return len;
}
int usb_vcp_read_blocking(uint8_t iface_num, uint8_t *buf, uint32_t len, int timeout) {
uint32_t start = HAL_GetTick();
while (sectrue != usb_vcp_can_read(iface_num)) {
if (timeout >= 0 && HAL_GetTick() - start >= timeout) {
return 0; // Timeout
}
__WFI(); // Enter sleep mode, waiting for interrupt
}
return usb_vcp_read(iface_num, buf, len);
}
int usb_vcp_write_blocking(uint8_t iface_num, const uint8_t *buf, uint32_t len, int timeout) {
uint32_t start = HAL_GetTick();
while (sectrue != usb_vcp_can_write(iface_num)) {
if (timeout >= 0 && HAL_GetTick() - start >= timeout) {
return 0; // Timeout
}
__WFI(); // Enter sleep mode, waiting for interrupt
}
return usb_vcp_write(iface_num, buf, len);
}
static void usb_vcp_class_init(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) {
// Open endpoints
USBD_LL_OpenEP(dev, state->ep_in, USBD_EP_TYPE_BULK, state->max_packet_len);
USBD_LL_OpenEP(dev, state->ep_out, USBD_EP_TYPE_BULK, state->max_packet_len);
USBD_LL_OpenEP(dev, state->ep_cmd, USBD_EP_TYPE_INTR, USB_CDC_MAX_CMD_PACKET_LEN);
// Reset the state
state->rx_ring.read = 0;
state->rx_ring.write = 0;
state->tx_ring.read = 0;
state->tx_ring.write = 0;
state->ep_in_is_idle = 1;
// Prepare the OUT EP to receive next packet
USBD_LL_PrepareReceive(dev, state->ep_out, state->rx_packet, state->max_packet_len);
}
static void usb_vcp_class_deinit(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) {
// Flush endpoints
USBD_LL_FlushEP(dev, state->ep_in);
USBD_LL_FlushEP(dev, state->ep_out);
USBD_LL_FlushEP(dev, state->ep_cmd);
// Close endpoints
USBD_LL_CloseEP(dev, state->ep_in);
USBD_LL_CloseEP(dev, state->ep_out);
USBD_LL_CloseEP(dev, state->ep_cmd);
}
static int usb_vcp_class_setup(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, USBD_SetupReqTypedef *req) {
static const usb_cdc_line_coding_t line_coding = {
.dwDTERate = 115200,
.bCharFormat = USB_CDC_1_STOP_BITS,
.bParityType = USB_CDC_NO_PARITY,
.bDataBits = 8,
};
if ((req->bmRequest & USB_REQ_TYPE_MASK) != USB_REQ_TYPE_CLASS) {
return USBD_OK;
}
if ((req->bmRequest & USB_REQ_DIR_MASK) == USB_REQ_DIR_D2H) {
if (req->bRequest == USB_CDC_GET_LINE_CODING) {
USBD_CtlSendData(dev, UNCONST(&line_coding), MIN(req->wLength, sizeof(line_coding)));
} else {
USBD_CtlSendData(dev, state->cmd_buffer, MIN(req->wLength, USB_CDC_MAX_CMD_PACKET_LEN));
}
} else { // USB_REQ_DIR_H2D
if (req->wLength > 0) {
USBD_CtlPrepareRx(dev, state->cmd_buffer, MIN(req->wLength, USB_CDC_MAX_CMD_PACKET_LEN));
}
}
return USBD_OK;
}
static void usb_vcp_class_data_in(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) {
if ((ep_num | USB_EP_DIR_IN) == state->ep_in) {
state->ep_in_is_idle = 1;
}
}
static void usb_vcp_class_data_out(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) {
if (ep_num == state->ep_out) {
uint32_t len = USBD_LL_GetRxDataSize(dev, ep_num);
// Write into the rx ring buffer
usb_rbuf_t *b = &state->rx_ring;
size_t mask = b->cap - 1;
size_t i;
for (i = 0; i < len; i++) {
if (state->rx_intr_fn != NULL) {
if (state->rx_packet[i] == state->rx_intr_byte) {
state->rx_intr_fn();
}
}
if (!ring_full(b)) {
b->buf[b->write & mask] = state->rx_packet[i];
b->write++;
}
}
// Prepare the OUT EP to receive next packet
USBD_LL_PrepareReceive(dev, state->ep_out, state->rx_packet, state->max_packet_len);
}
}
static void usb_vcp_class_sof(USBD_HandleTypeDef *dev, usb_vcp_state_t *state) {
if (!state->ep_in_is_idle) {
return;
}
// Read from the tx ring buffer
usb_rbuf_t *b = &state->tx_ring;
uint8_t *buf = state->tx_packet;
// We avoid sending full packets as they stall the hosts pipeline, see:
// <http://www.cypress.com/?id=4&rID=92719>
size_t len = state->max_packet_len - 1;
size_t mask = b->cap - 1;
size_t i;
for (i = 0; (i < len) && !ring_empty(b); i++) {
buf[i] = b->buf[b->read & mask];
b->read++;
}
if (i > 0) {
state->ep_in_is_idle = 0;
USBD_LL_Transmit(&usb_dev_handle, state->ep_in, buf, (uint16_t)i);
}
}