1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-22 13:21:03 +00:00
trezor-firmware/trezorlib/client.py
2018-07-12 16:36:33 +02:00

1137 lines
42 KiB
Python

# This file is part of the Trezor project.
#
# Copyright (C) 2012-2018 SatoshiLabs and contributors
#
# This library is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License version 3
# as published by the Free Software Foundation.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the License along with this library.
# If not, see <https://www.gnu.org/licenses/lgpl-3.0.html>.
import functools
import logging
import os
import sys
import time
import binascii
import hashlib
import unicodedata
import getpass
import warnings
from mnemonic import Mnemonic
from . import messages as proto
from . import tools
from . import mapping
from . import nem
from . import protobuf
from . import stellar
from .debuglink import DebugLink
if sys.version_info.major < 3:
raise Exception("Trezorlib does not support Python 2 anymore.")
SCREENSHOT = False
LOG = logging.getLogger(__name__)
# make a getch function
try:
import termios
import tty
# POSIX system. Create and return a getch that manipulates the tty.
# On Windows, termios will fail to import.
def getch():
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:
tty.setraw(fd)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
except ImportError:
# Windows system.
# Use msvcrt's getch function.
import msvcrt
def getch():
while True:
key = msvcrt.getch()
if key in (0x00, 0xe0):
# skip special keys: read the scancode and repeat
msvcrt.getch()
continue
return key.decode('latin1')
def get_buttonrequest_value(code):
# Converts integer code to its string representation of ButtonRequestType
return [k for k in dir(proto.ButtonRequestType) if getattr(proto.ButtonRequestType, k) == code][0]
class CallException(Exception):
pass
class PinException(CallException):
pass
class field:
# Decorator extracts single value from
# protobuf object. If the field is not
# present, raises an exception.
def __init__(self, field):
self.field = field
def __call__(self, f):
@functools.wraps(f)
def wrapped_f(*args, **kwargs):
ret = f(*args, **kwargs)
return getattr(ret, self.field)
return wrapped_f
class expect:
# Decorator checks if the method
# returned one of expected protobuf messages
# or raises an exception
def __init__(self, *expected):
self.expected = expected
def __call__(self, f):
@functools.wraps(f)
def wrapped_f(*args, **kwargs):
ret = f(*args, **kwargs)
if not isinstance(ret, self.expected):
raise RuntimeError("Got %s, expected %s" % (ret.__class__, self.expected))
return ret
return wrapped_f
def session(f):
# Decorator wraps a BaseClient method
# with session activation / deactivation
@functools.wraps(f)
def wrapped_f(*args, **kwargs):
__tracebackhide__ = True # pytest traceback hiding - this function won't appear in tracebacks
client = args[0]
client.transport.session_begin()
try:
return f(*args, **kwargs)
finally:
client.transport.session_end()
return wrapped_f
def normalize_nfc(txt):
'''
Normalize message to NFC and return bytes suitable for protobuf.
This seems to be bitcoin-qt standard of doing things.
'''
if isinstance(txt, bytes):
txt = txt.decode('utf-8')
return unicodedata.normalize('NFC', txt).encode('utf-8')
class BaseClient(object):
# Implements very basic layer of sending raw protobuf
# messages to device and getting its response back.
def __init__(self, transport, **kwargs):
LOG.info("creating client instance for device: {}".format(transport.get_path()))
self.transport = transport
super(BaseClient, self).__init__() # *args, **kwargs)
def close(self):
pass
def cancel(self):
self.transport.write(proto.Cancel())
@session
def call_raw(self, msg):
__tracebackhide__ = True # pytest traceback hiding - this function won't appear in tracebacks
self.transport.write(msg)
return self.transport.read()
@session
def call(self, msg):
resp = self.call_raw(msg)
handler_name = "callback_%s" % resp.__class__.__name__
handler = getattr(self, handler_name, None)
if handler is not None:
msg = handler(resp)
if msg is None:
raise ValueError("Callback %s must return protobuf message, not None" % handler)
resp = self.call(msg)
return resp
def callback_Failure(self, msg):
if msg.code in (proto.FailureType.PinInvalid,
proto.FailureType.PinCancelled, proto.FailureType.PinExpected):
raise PinException(msg.code, msg.message)
raise CallException(msg.code, msg.message)
def register_message(self, msg):
'''Allow application to register custom protobuf message type'''
mapping.register_message(msg)
class TextUIMixin(object):
# This class demonstrates easy test-based UI
# integration between the device and wallet.
# You can implement similar functionality
# by implementing your own GuiMixin with
# graphical widgets for every type of these callbacks.
def __init__(self, *args, **kwargs):
super(TextUIMixin, self).__init__(*args, **kwargs)
@staticmethod
def print(text):
print(text, file=sys.stderr)
def callback_ButtonRequest(self, msg):
# log("Sending ButtonAck for %s " % get_buttonrequest_value(msg.code))
return proto.ButtonAck()
def callback_RecoveryMatrix(self, msg):
if self.recovery_matrix_first_pass:
self.recovery_matrix_first_pass = False
self.print("Use the numeric keypad to describe positions. For the word list use only left and right keys.")
self.print("Use backspace to correct an entry. The keypad layout is:")
self.print(" 7 8 9 7 | 9")
self.print(" 4 5 6 4 | 6")
self.print(" 1 2 3 1 | 3")
while True:
character = getch()
if character in ('\x03', '\x04'):
return proto.Cancel()
if character in ('\x08', '\x7f'):
return proto.WordAck(word='\x08')
# ignore middle column if only 6 keys requested.
if msg.type == proto.WordRequestType.Matrix6 and character in ('2', '5', '8'):
continue
if character.isdigit():
return proto.WordAck(word=character)
def callback_PinMatrixRequest(self, msg):
if msg.type == proto.PinMatrixRequestType.Current:
desc = 'current PIN'
elif msg.type == proto.PinMatrixRequestType.NewFirst:
desc = 'new PIN'
elif msg.type == proto.PinMatrixRequestType.NewSecond:
desc = 'new PIN again'
else:
desc = 'PIN'
self.print("Use the numeric keypad to describe number positions. The layout is:")
self.print(" 7 8 9")
self.print(" 4 5 6")
self.print(" 1 2 3")
self.print("Please enter %s: " % desc)
pin = getpass.getpass('')
if not pin.isdigit():
raise ValueError('Non-numerical PIN provided')
return proto.PinMatrixAck(pin=pin)
def callback_PassphraseRequest(self, msg):
if msg.on_device is True:
return proto.PassphraseAck()
if os.getenv("PASSPHRASE") is not None:
self.print("Passphrase required. Using PASSPHRASE environment variable.")
passphrase = Mnemonic.normalize_string(os.getenv("PASSPHRASE"))
return proto.PassphraseAck(passphrase=passphrase)
self.print("Passphrase required: ")
passphrase = getpass.getpass('')
self.print("Confirm your Passphrase: ")
if passphrase == getpass.getpass(''):
passphrase = Mnemonic.normalize_string(passphrase)
return proto.PassphraseAck(passphrase=passphrase)
else:
self.print("Passphrase did not match! ")
exit()
def callback_PassphraseStateRequest(self, msg):
return proto.PassphraseStateAck()
def callback_WordRequest(self, msg):
if msg.type in (proto.WordRequestType.Matrix9,
proto.WordRequestType.Matrix6):
return self.callback_RecoveryMatrix(msg)
self.print("Enter one word of mnemonic: ")
word = input()
if self.expand:
word = self.mnemonic_wordlist.expand_word(word)
return proto.WordAck(word=word)
class DebugLinkMixin(object):
# This class implements automatic responses
# and other functionality for unit tests
# for various callbacks, created in order
# to automatically pass unit tests.
#
# This mixing should be used only for purposes
# of unit testing, because it will fail to work
# without special DebugLink interface provided
# by the device.
DEBUG = LOG.getChild('debug_link').debug
def __init__(self, *args, **kwargs):
super(DebugLinkMixin, self).__init__(*args, **kwargs)
self.debug = None
self.in_with_statement = 0
self.button_wait = 0
self.screenshot_id = 0
# Always press Yes and provide correct pin
self.setup_debuglink(True, True)
# Do not expect any specific response from device
self.expected_responses = None
# Use blank passphrase
self.set_passphrase('')
def close(self):
super(DebugLinkMixin, self).close()
if self.debug:
self.debug.close()
def set_debuglink(self, debug_transport):
self.debug = DebugLink(debug_transport)
def set_buttonwait(self, secs):
self.button_wait = secs
def __enter__(self):
# For usage in with/expected_responses
self.in_with_statement += 1
return self
def __exit__(self, _type, value, traceback):
self.in_with_statement -= 1
if _type is not None:
# Another exception raised
return False
# return isinstance(value, TypeError)
# Evaluate missed responses in 'with' statement
if self.expected_responses is not None and len(self.expected_responses):
raise RuntimeError("Some of expected responses didn't come from device: %s" %
[repr(x) for x in self.expected_responses])
# Cleanup
self.expected_responses = None
return False
def set_expected_responses(self, expected):
if not self.in_with_statement:
raise RuntimeError("Must be called inside 'with' statement")
self.expected_responses = expected
def setup_debuglink(self, button, pin_correct):
self.button = button # True -> YES button, False -> NO button
self.pin_correct = pin_correct
def set_passphrase(self, passphrase):
self.passphrase = Mnemonic.normalize_string(passphrase)
def set_mnemonic(self, mnemonic):
self.mnemonic = Mnemonic.normalize_string(mnemonic).split(' ')
def call_raw(self, msg):
__tracebackhide__ = True # pytest traceback hiding - this function won't appear in tracebacks
if SCREENSHOT and self.debug:
from PIL import Image
layout = self.debug.read_layout()
im = Image.new("RGB", (128, 64))
pix = im.load()
for x in range(128):
for y in range(64):
rx, ry = 127 - x, 63 - y
if (ord(layout[rx + (ry / 8) * 128]) & (1 << (ry % 8))) > 0:
pix[x, y] = (255, 255, 255)
im.save('scr%05d.png' % self.screenshot_id)
self.screenshot_id += 1
resp = super(DebugLinkMixin, self).call_raw(msg)
self._check_request(resp)
return resp
def _check_request(self, msg):
__tracebackhide__ = True # pytest traceback hiding - this function won't appear in tracebacks
if self.expected_responses is not None:
try:
expected = self.expected_responses.pop(0)
except IndexError:
raise AssertionError(proto.FailureType.UnexpectedMessage,
"Got %s, but no message has been expected" % repr(msg))
if msg.__class__ != expected.__class__:
raise AssertionError(proto.FailureType.UnexpectedMessage,
"Expected %s, got %s" % (repr(expected), repr(msg)))
for field, value in expected.__dict__.items():
if value is None or value == []:
continue
if getattr(msg, field) != value:
raise AssertionError(proto.FailureType.UnexpectedMessage,
"Expected %s, got %s" % (repr(expected), repr(msg)))
def callback_ButtonRequest(self, msg):
self.DEBUG("ButtonRequest code: " + get_buttonrequest_value(msg.code))
self.DEBUG("Pressing button " + str(self.button))
if self.button_wait:
self.DEBUG("Waiting %d seconds " % self.button_wait)
time.sleep(self.button_wait)
self.debug.press_button(self.button)
return proto.ButtonAck()
def callback_PinMatrixRequest(self, msg):
if self.pin_correct:
pin = self.debug.read_pin_encoded()
else:
pin = '444222'
return proto.PinMatrixAck(pin=pin)
def callback_PassphraseRequest(self, msg):
self.DEBUG("Provided passphrase: '%s'" % self.passphrase)
return proto.PassphraseAck(passphrase=self.passphrase)
def callback_PassphraseStateRequest(self, msg):
return proto.PassphraseStateAck()
def callback_WordRequest(self, msg):
(word, pos) = self.debug.read_recovery_word()
if word != '':
return proto.WordAck(word=word)
if pos != 0:
return proto.WordAck(word=self.mnemonic[pos - 1])
raise RuntimeError("Unexpected call")
class ProtocolMixin(object):
VENDORS = ('bitcointrezor.com', 'trezor.io')
def __init__(self, state=None, *args, **kwargs):
super(ProtocolMixin, self).__init__(*args, **kwargs)
self.state = state
self.init_device()
self.tx_api = None
def set_tx_api(self, tx_api):
self.tx_api = tx_api
def init_device(self):
init_msg = proto.Initialize()
if self.state is not None:
init_msg.state = self.state
self.features = expect(proto.Features)(self.call)(init_msg)
if str(self.features.vendor) not in self.VENDORS:
raise RuntimeError("Unsupported device")
def _get_local_entropy(self):
return os.urandom(32)
@staticmethod
def _convert_prime(n: tools.Address) -> tools.Address:
# Convert minus signs to uint32 with flag
return [tools.H_(int(abs(x))) if x < 0 else x for x in n]
@staticmethod
def expand_path(n):
warnings.warn('expand_path is deprecated, use tools.parse_path', DeprecationWarning)
return tools.parse_path(n)
@expect(proto.PublicKey)
def get_public_node(self, n, ecdsa_curve_name=None, show_display=False, coin_name=None):
n = self._convert_prime(n)
return self.call(proto.GetPublicKey(address_n=n, ecdsa_curve_name=ecdsa_curve_name, show_display=show_display, coin_name=coin_name))
@field('address')
@expect(proto.Address)
def get_address(self, coin_name, n, show_display=False, multisig=None, script_type=proto.InputScriptType.SPENDADDRESS):
n = self._convert_prime(n)
if multisig:
return self.call(proto.GetAddress(address_n=n, coin_name=coin_name, show_display=show_display, multisig=multisig, script_type=script_type))
else:
return self.call(proto.GetAddress(address_n=n, coin_name=coin_name, show_display=show_display, script_type=script_type))
@field('address')
@expect(proto.EthereumAddress)
def ethereum_get_address(self, n, show_display=False, multisig=None):
n = self._convert_prime(n)
return self.call(proto.EthereumGetAddress(address_n=n, show_display=show_display))
@session
def ethereum_sign_tx(self, n, nonce, gas_price, gas_limit, to, value, data=None, chain_id=None, tx_type=None):
def int_to_big_endian(value):
return value.to_bytes((value.bit_length() + 7) // 8, 'big')
n = self._convert_prime(n)
msg = proto.EthereumSignTx(
address_n=n,
nonce=int_to_big_endian(nonce),
gas_price=int_to_big_endian(gas_price),
gas_limit=int_to_big_endian(gas_limit),
value=int_to_big_endian(value))
if to:
msg.to = to
if data:
msg.data_length = len(data)
data, chunk = data[1024:], data[:1024]
msg.data_initial_chunk = chunk
if chain_id:
msg.chain_id = chain_id
if tx_type is not None:
msg.tx_type = tx_type
response = self.call(msg)
while response.data_length is not None:
data_length = response.data_length
data, chunk = data[data_length:], data[:data_length]
response = self.call(proto.EthereumTxAck(data_chunk=chunk))
return response.signature_v, response.signature_r, response.signature_s
@expect(proto.EthereumMessageSignature)
def ethereum_sign_message(self, n, message):
n = self._convert_prime(n)
message = normalize_nfc(message)
return self.call(proto.EthereumSignMessage(address_n=n, message=message))
def ethereum_verify_message(self, address, signature, message):
message = normalize_nfc(message)
try:
resp = self.call(proto.EthereumVerifyMessage(address=address, signature=signature, message=message))
except CallException as e:
resp = e
if isinstance(resp, proto.Success):
return True
return False
#
# Lisk functions
#
@field('address')
@expect(proto.LiskAddress)
def lisk_get_address(self, n, show_display=False):
n = self._convert_prime(n)
return self.call(proto.LiskGetAddress(address_n=n, show_display=show_display))
@expect(proto.LiskPublicKey)
def lisk_get_public_key(self, n, show_display=False):
n = self._convert_prime(n)
return self.call(proto.LiskGetPublicKey(address_n=n, show_display=show_display))
@expect(proto.LiskMessageSignature)
def lisk_sign_message(self, n, message):
n = self._convert_prime(n)
message = normalize_nfc(message)
return self.call(proto.LiskSignMessage(address_n=n, message=message))
def lisk_verify_message(self, pubkey, signature, message):
message = normalize_nfc(message)
try:
resp = self.call(proto.LiskVerifyMessage(signature=signature, public_key=pubkey, message=message))
except CallException as e:
resp = e
return isinstance(resp, proto.Success)
@expect(proto.LiskSignedTx)
def lisk_sign_tx(self, n, transaction):
n = self._convert_prime(n)
def asset_to_proto(asset):
msg = proto.LiskTransactionAsset()
if "votes" in asset:
msg.votes = asset["votes"]
if "data" in asset:
msg.data = asset["data"]
if "signature" in asset:
msg.signature = proto.LiskSignatureType()
msg.signature.public_key = binascii.unhexlify(asset["signature"]["publicKey"])
if "delegate" in asset:
msg.delegate = proto.LiskDelegateType()
msg.delegate.username = asset["delegate"]["username"]
if "multisignature" in asset:
msg.multisignature = proto.LiskMultisignatureType()
msg.multisignature.min = asset["multisignature"]["min"]
msg.multisignature.life_time = asset["multisignature"]["lifetime"]
msg.multisignature.keys_group = asset["multisignature"]["keysgroup"]
return msg
msg = proto.LiskTransactionCommon()
msg.type = transaction["type"]
msg.fee = int(transaction["fee"]) # Lisk use strings for big numbers (javascript issue)
msg.amount = int(transaction["amount"]) # And we convert it back to number
msg.timestamp = transaction["timestamp"]
if "recipientId" in transaction:
msg.recipient_id = transaction["recipientId"]
if "senderPublicKey" in transaction:
msg.sender_public_key = binascii.unhexlify(transaction["senderPublicKey"])
if "requesterPublicKey" in transaction:
msg.requester_public_key = binascii.unhexlify(transaction["requesterPublicKey"])
if "signature" in transaction:
msg.signature = binascii.unhexlify(transaction["signature"])
msg.asset = asset_to_proto(transaction["asset"])
return self.call(proto.LiskSignTx(address_n=n, transaction=msg))
@field('entropy')
@expect(proto.Entropy)
def get_entropy(self, size):
return self.call(proto.GetEntropy(size=size))
@field('message')
@expect(proto.Success)
def ping(self, msg, button_protection=False, pin_protection=False, passphrase_protection=False):
msg = proto.Ping(message=msg,
button_protection=button_protection,
pin_protection=pin_protection,
passphrase_protection=passphrase_protection)
return self.call(msg)
def get_device_id(self):
return self.features.device_id
@field('message')
@expect(proto.Success)
def apply_settings(self, label=None, language=None, use_passphrase=None, homescreen=None, passphrase_source=None, auto_lock_delay_ms=None):
settings = proto.ApplySettings()
if label is not None:
settings.label = label
if language:
settings.language = language
if use_passphrase is not None:
settings.use_passphrase = use_passphrase
if homescreen is not None:
settings.homescreen = homescreen
if passphrase_source is not None:
settings.passphrase_source = passphrase_source
if auto_lock_delay_ms is not None:
settings.auto_lock_delay_ms = auto_lock_delay_ms
out = self.call(settings)
self.init_device() # Reload Features
return out
@field('message')
@expect(proto.Success)
def apply_flags(self, flags):
out = self.call(proto.ApplyFlags(flags=flags))
self.init_device() # Reload Features
return out
@field('message')
@expect(proto.Success)
def clear_session(self):
return self.call(proto.ClearSession())
@field('message')
@expect(proto.Success)
def change_pin(self, remove=False):
ret = self.call(proto.ChangePin(remove=remove))
self.init_device() # Re-read features
return ret
@expect(proto.MessageSignature)
def sign_message(self, coin_name, n, message, script_type=proto.InputScriptType.SPENDADDRESS):
n = self._convert_prime(n)
message = normalize_nfc(message)
return self.call(proto.SignMessage(coin_name=coin_name, address_n=n, message=message, script_type=script_type))
@expect(proto.SignedIdentity)
def sign_identity(self, identity, challenge_hidden, challenge_visual, ecdsa_curve_name=None):
return self.call(proto.SignIdentity(identity=identity, challenge_hidden=challenge_hidden, challenge_visual=challenge_visual, ecdsa_curve_name=ecdsa_curve_name))
@expect(proto.ECDHSessionKey)
def get_ecdh_session_key(self, identity, peer_public_key, ecdsa_curve_name=None):
return self.call(proto.GetECDHSessionKey(identity=identity, peer_public_key=peer_public_key, ecdsa_curve_name=ecdsa_curve_name))
@expect(proto.CosiCommitment)
def cosi_commit(self, n, data):
n = self._convert_prime(n)
return self.call(proto.CosiCommit(address_n=n, data=data))
@expect(proto.CosiSignature)
def cosi_sign(self, n, data, global_commitment, global_pubkey):
n = self._convert_prime(n)
return self.call(proto.CosiSign(address_n=n, data=data, global_commitment=global_commitment, global_pubkey=global_pubkey))
@field('message')
@expect(proto.Success)
def set_u2f_counter(self, u2f_counter):
ret = self.call(proto.SetU2FCounter(u2f_counter=u2f_counter))
return ret
@field("address")
@expect(proto.NEMAddress)
def nem_get_address(self, n, network, show_display=False):
n = self._convert_prime(n)
return self.call(proto.NEMGetAddress(address_n=n, network=network, show_display=show_display))
@expect(proto.NEMSignedTx)
def nem_sign_tx(self, n, transaction):
n = self._convert_prime(n)
try:
msg = nem.create_sign_tx(transaction)
except ValueError as e:
raise CallException(e.args)
assert msg.transaction is not None
msg.transaction.address_n = n
return self.call(msg)
def verify_message(self, coin_name, address, signature, message):
message = normalize_nfc(message)
try:
resp = self.call(proto.VerifyMessage(address=address, signature=signature, message=message, coin_name=coin_name))
except CallException as e:
resp = e
if isinstance(resp, proto.Success):
return True
return False
@field('value')
@expect(proto.CipheredKeyValue)
def encrypt_keyvalue(self, n, key, value, ask_on_encrypt=True, ask_on_decrypt=True, iv=b''):
n = self._convert_prime(n)
return self.call(proto.CipherKeyValue(address_n=n,
key=key,
value=value,
encrypt=True,
ask_on_encrypt=ask_on_encrypt,
ask_on_decrypt=ask_on_decrypt,
iv=iv))
@field('value')
@expect(proto.CipheredKeyValue)
def decrypt_keyvalue(self, n, key, value, ask_on_encrypt=True, ask_on_decrypt=True, iv=b''):
n = self._convert_prime(n)
return self.call(proto.CipherKeyValue(address_n=n,
key=key,
value=value,
encrypt=False,
ask_on_encrypt=ask_on_encrypt,
ask_on_decrypt=ask_on_decrypt,
iv=iv))
def _prepare_sign_tx(self, inputs, outputs):
tx = proto.TransactionType()
tx.inputs = inputs
tx.outputs = outputs
txes = {None: tx}
for inp in inputs:
if inp.prev_hash in txes:
continue
if inp.script_type in (proto.InputScriptType.SPENDP2SHWITNESS,
proto.InputScriptType.SPENDWITNESS):
continue
if not self.tx_api:
raise RuntimeError('TX_API not defined')
prev_tx = self.tx_api.get_tx(binascii.hexlify(inp.prev_hash).decode('utf-8'))
txes[inp.prev_hash] = prev_tx
return txes
@session
def sign_tx(self, coin_name, inputs, outputs, version=None, lock_time=None, expiry=None, overwintered=None, debug_processor=None):
# start = time.time()
txes = self._prepare_sign_tx(inputs, outputs)
# Prepare and send initial message
tx = proto.SignTx()
tx.inputs_count = len(inputs)
tx.outputs_count = len(outputs)
tx.coin_name = coin_name
if version is not None:
tx.version = version
if lock_time is not None:
tx.lock_time = lock_time
if expiry is not None:
tx.expiry = expiry
if overwintered is not None:
tx.overwintered = overwintered
res = self.call(tx)
# Prepare structure for signatures
signatures = [None] * len(inputs)
serialized_tx = b''
counter = 0
while True:
counter += 1
if isinstance(res, proto.Failure):
raise CallException("Signing failed")
if not isinstance(res, proto.TxRequest):
raise CallException("Unexpected message")
# If there's some part of signed transaction, let's add it
if res.serialized and res.serialized.serialized_tx:
# log("RECEIVED PART OF SERIALIZED TX (%d BYTES)" % len(res.serialized.serialized_tx))
serialized_tx += res.serialized.serialized_tx
if res.serialized and res.serialized.signature_index is not None:
if signatures[res.serialized.signature_index] is not None:
raise ValueError("Signature for index %d already filled" % res.serialized.signature_index)
signatures[res.serialized.signature_index] = res.serialized.signature
if res.request_type == proto.RequestType.TXFINISHED:
# Device didn't ask for more information, finish workflow
break
# Device asked for one more information, let's process it.
if not res.details.tx_hash:
current_tx = txes[None]
else:
current_tx = txes[bytes(res.details.tx_hash)]
if res.request_type == proto.RequestType.TXMETA:
msg = proto.TransactionType()
msg.version = current_tx.version
msg.lock_time = current_tx.lock_time
msg.inputs_cnt = len(current_tx.inputs)
if res.details.tx_hash:
msg.outputs_cnt = len(current_tx.bin_outputs)
else:
msg.outputs_cnt = len(current_tx.outputs)
msg.extra_data_len = len(current_tx.extra_data) if current_tx.extra_data else 0
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXINPUT:
msg = proto.TransactionType()
msg.inputs = [current_tx.inputs[res.details.request_index]]
if debug_processor is not None:
# msg needs to be deep copied so when it's modified
# the other messages stay intact
from copy import deepcopy
msg = deepcopy(msg)
# If debug_processor function is provided,
# pass thru it the request and prepared response.
# This is useful for tests, see test_msg_signtx
msg = debug_processor(res, msg)
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXOUTPUT:
msg = proto.TransactionType()
if res.details.tx_hash:
msg.bin_outputs = [current_tx.bin_outputs[res.details.request_index]]
else:
msg.outputs = [current_tx.outputs[res.details.request_index]]
if debug_processor is not None:
# msg needs to be deep copied so when it's modified
# the other messages stay intact
from copy import deepcopy
msg = deepcopy(msg)
# If debug_processor function is provided,
# pass thru it the request and prepared response.
# This is useful for tests, see test_msg_signtx
msg = debug_processor(res, msg)
res = self.call(proto.TxAck(tx=msg))
continue
elif res.request_type == proto.RequestType.TXEXTRADATA:
o, l = res.details.extra_data_offset, res.details.extra_data_len
msg = proto.TransactionType()
msg.extra_data = current_tx.extra_data[o:o + l]
res = self.call(proto.TxAck(tx=msg))
continue
if None in signatures:
raise RuntimeError("Some signatures are missing!")
# log("SIGNED IN %.03f SECONDS, CALLED %d MESSAGES, %d BYTES" %
# (time.time() - start, counter, len(serialized_tx)))
return (signatures, serialized_tx)
@field('message')
@expect(proto.Success)
def wipe_device(self):
ret = self.call(proto.WipeDevice())
self.init_device()
return ret
@field('message')
@expect(proto.Success)
def recovery_device(self, word_count, passphrase_protection, pin_protection, label, language, type=proto.RecoveryDeviceType.ScrambledWords, expand=False, dry_run=False):
if self.features.initialized and not dry_run:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
if word_count not in (12, 18, 24):
raise ValueError("Invalid word count. Use 12/18/24")
self.recovery_matrix_first_pass = True
self.expand = expand
if self.expand:
# optimization to load the wordlist once, instead of for each recovery word
self.mnemonic_wordlist = Mnemonic('english')
res = self.call(proto.RecoveryDevice(
word_count=int(word_count),
passphrase_protection=bool(passphrase_protection),
pin_protection=bool(pin_protection),
label=label,
language=language,
enforce_wordlist=True,
type=type,
dry_run=dry_run))
self.init_device()
return res
@field('message')
@expect(proto.Success)
@session
def reset_device(self, display_random, strength, passphrase_protection, pin_protection, label, language, u2f_counter=0, skip_backup=False):
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
# Begin with device reset workflow
msg = proto.ResetDevice(display_random=display_random,
strength=strength,
passphrase_protection=bool(passphrase_protection),
pin_protection=bool(pin_protection),
language=language,
label=label,
u2f_counter=u2f_counter,
skip_backup=bool(skip_backup))
resp = self.call(msg)
if not isinstance(resp, proto.EntropyRequest):
raise RuntimeError("Invalid response, expected EntropyRequest")
external_entropy = self._get_local_entropy()
LOG.debug("Computer generated entropy: " + binascii.hexlify(external_entropy).decode())
ret = self.call(proto.EntropyAck(entropy=external_entropy))
self.init_device()
return ret
@field('message')
@expect(proto.Success)
def backup_device(self):
ret = self.call(proto.BackupDevice())
return ret
@field('message')
@expect(proto.Success)
def load_device_by_mnemonic(self, mnemonic, pin, passphrase_protection, label, language='english', skip_checksum=False, expand=False):
# Convert mnemonic to UTF8 NKFD
mnemonic = Mnemonic.normalize_string(mnemonic)
# Convert mnemonic to ASCII stream
mnemonic = mnemonic.encode('utf-8')
m = Mnemonic('english')
if expand:
mnemonic = m.expand(mnemonic)
if not skip_checksum and not m.check(mnemonic):
raise ValueError("Invalid mnemonic checksum")
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
resp = self.call(proto.LoadDevice(mnemonic=mnemonic, pin=pin,
passphrase_protection=passphrase_protection,
language=language,
label=label,
skip_checksum=skip_checksum))
self.init_device()
return resp
@field('message')
@expect(proto.Success)
def load_device_by_xprv(self, xprv, pin, passphrase_protection, label, language):
if self.features.initialized:
raise RuntimeError("Device is initialized already. Call wipe_device() and try again.")
if xprv[0:4] not in ('xprv', 'tprv'):
raise ValueError("Unknown type of xprv")
if not 100 < len(xprv) < 112: # yes this is correct in Python
raise ValueError("Invalid length of xprv")
node = proto.HDNodeType()
data = binascii.hexlify(tools.b58decode(xprv, None))
if data[90:92] != b'00':
raise ValueError("Contain invalid private key")
checksum = binascii.hexlify(tools.btc_hash(binascii.unhexlify(data[:156]))[:4])
if checksum != data[156:]:
raise ValueError("Checksum doesn't match")
# version 0488ade4
# depth 00
# fingerprint 00000000
# child_num 00000000
# chaincode 873dff81c02f525623fd1fe5167eac3a55a049de3d314bb42ee227ffed37d508
# privkey 00e8f32e723decf4051aefac8e2c93c9c5b214313817cdb01a1494b917c8436b35
# checksum e77e9d71
node.depth = int(data[8:10], 16)
node.fingerprint = int(data[10:18], 16)
node.child_num = int(data[18:26], 16)
node.chain_code = binascii.unhexlify(data[26:90])
node.private_key = binascii.unhexlify(data[92:156]) # skip 0x00 indicating privkey
resp = self.call(proto.LoadDevice(node=node,
pin=pin,
passphrase_protection=passphrase_protection,
language=language,
label=label))
self.init_device()
return resp
@session
def firmware_update(self, fp):
if self.features.bootloader_mode is False:
raise RuntimeError("Device must be in bootloader mode")
data = fp.read()
resp = self.call(proto.FirmwareErase(length=len(data)))
if isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
# TREZORv1 method
if isinstance(resp, proto.Success):
fingerprint = hashlib.sha256(data[256:]).hexdigest()
LOG.debug("Firmware fingerprint: " + fingerprint)
resp = self.call(proto.FirmwareUpload(payload=data))
if isinstance(resp, proto.Success):
return True
elif isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
raise RuntimeError("Unexpected result %s" % resp)
# TREZORv2 method
if isinstance(resp, proto.FirmwareRequest):
import pyblake2
while True:
payload = data[resp.offset:resp.offset + resp.length]
digest = pyblake2.blake2s(payload).digest()
resp = self.call(proto.FirmwareUpload(payload=payload, hash=digest))
if isinstance(resp, proto.FirmwareRequest):
continue
elif isinstance(resp, proto.Success):
return True
elif isinstance(resp, proto.Failure) and resp.code == proto.FailureType.FirmwareError:
return False
raise RuntimeError("Unexpected result %s" % resp)
raise RuntimeError("Unexpected message %s" % resp)
@field('message')
@expect(proto.Success)
def self_test(self):
if self.features.bootloader_mode is False:
raise RuntimeError("Device must be in bootloader mode")
return self.call(proto.SelfTest(payload=b'\x00\xFF\x55\xAA\x66\x99\x33\xCCABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!\x00\xFF\x55\xAA\x66\x99\x33\xCC'))
@field('public_key')
@expect(proto.StellarPublicKey)
def stellar_get_public_key(self, address_n, show_display=False):
return self.call(proto.StellarGetPublicKey(address_n=address_n, show_display=show_display))
@field('address')
@expect(proto.StellarAddress)
def stellar_get_address(self, address_n, show_display=False):
return self.call(proto.StellarGetAddress(address_n=address_n, show_display=show_display))
def stellar_sign_transaction(self, tx, operations, address_n, network_passphrase=None):
# default networkPassphrase to the public network
if network_passphrase is None:
network_passphrase = "Public Global Stellar Network ; September 2015"
tx.network_passphrase = network_passphrase
tx.address_n = address_n
tx.num_operations = len(operations)
# Signing loop works as follows:
#
# 1. Start with tx (header information for the transaction) and operations (an array of operation protobuf messagess)
# 2. Send the tx header to the device
# 3. Receive a StellarTxOpRequest message
# 4. Send operations one by one until all operations have been sent. If there are more operations to sign, the device will send a StellarTxOpRequest message
# 5. The final message received will be StellarSignedTx which is returned from this method
resp = self.call(tx)
try:
while isinstance(resp, proto.StellarTxOpRequest):
resp = self.call(operations.pop(0))
except IndexError:
# pop from empty list
raise CallException("Stellar.UnexpectedEndOfOperations",
"Reached end of operations without a signature.") from None
if not isinstance(resp, proto.StellarSignedTx):
raise CallException(proto.FailureType.UnexpectedMessage, resp)
if operations:
raise CallException("Stellar.UnprocessedOperations",
"Received a signature before processing all operations.")
return resp
class TrezorClient(ProtocolMixin, TextUIMixin, BaseClient):
def __init__(self, transport, *args, **kwargs):
super().__init__(transport=transport, *args, **kwargs)
class TrezorClientDebugLink(ProtocolMixin, DebugLinkMixin, BaseClient):
def __init__(self, transport, *args, **kwargs):
super().__init__(transport=transport, *args, **kwargs)