1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-18 21:48:13 +00:00
trezor-firmware/crypto/shamir.c

336 lines
9.7 KiB
C

/*
* Implementation of the hazardous parts of the SSS library
*
* Copyright (c) 2017 Daan Sprenkels <hello@dsprenkels.com>
* Copyright (c) 2019 SatoshiLabs
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* This code contains the actual Shamir secret sharing functionality. The
* implementation of this code is based on the idea that the user likes to
* generate/combine 32 shares (in GF(2^8)) at the same time, because a 256 bit
* key will be exactly 32 bytes. Therefore we bitslice all the input and
* unbitslice the output right before returning.
*
* This bitslice approach optimizes natively on all architectures that are 32
* bit or more. Care is taken to use not too many registers, to ensure that no
* values have to be leaked to the stack.
*
* All functions in this module are implemented constant time and constant
* lookup operations, as all proper crypto code must be.
*/
#include "shamir.h"
#include <string.h>
#include "memzero.h"
static void bitslice(uint32_t r[8], const uint8_t *x, size_t len) {
size_t bit_idx = 0, arr_idx = 0;
uint32_t cur = 0;
memset(r, 0, sizeof(uint32_t[8]));
for (arr_idx = 0; arr_idx < len; arr_idx++) {
cur = (uint32_t)x[arr_idx];
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
r[bit_idx] |= ((cur >> bit_idx) & 1) << arr_idx;
}
}
}
static void unbitslice(uint8_t *r, const uint32_t x[8], size_t len) {
size_t bit_idx = 0, arr_idx = 0;
uint32_t cur = 0;
memset(r, 0, sizeof(uint8_t) * len);
for (bit_idx = 0; bit_idx < 8; bit_idx++) {
cur = (uint32_t)x[bit_idx];
for (arr_idx = 0; arr_idx < len; arr_idx++) {
r[arr_idx] |= ((cur >> arr_idx) & 1) << bit_idx;
}
}
}
static void bitslice_setall(uint32_t r[8], const uint8_t x) {
size_t idx = 0;
for (idx = 0; idx < 8; idx++) {
r[idx] = -((x >> idx) & 1);
}
}
/*
* Add (XOR) `r` with `x` and store the result in `r`.
*/
static void gf256_add(uint32_t r[8], const uint32_t x[8]) {
size_t idx = 0;
for (idx = 0; idx < 8; idx++) r[idx] ^= x[idx];
}
/*
* Safely multiply two bitsliced polynomials in GF(2^8) reduced by
* x^8 + x^4 + x^3 + x + 1. `r` and `a` may overlap, but overlapping of `r`
* and `b` will produce an incorrect result! If you need to square a polynomial
* use `gf256_square` instead.
*/
static void gf256_mul(uint32_t r[8], const uint32_t a[8], const uint32_t b[8]) {
/* This function implements Russian Peasant multiplication on two
* bitsliced polynomials.
*
* I personally think that these kinds of long lists of operations
* are often a bit ugly. A double for loop would be nicer and would
* take up a lot less lines of code.
* However, some compilers seem to fail in optimizing these kinds of
* loops. So we will just have to do this by hand.
*/
uint32_t a2[8] = {0};
memcpy(a2, a, sizeof(uint32_t[8]));
r[0] = a2[0] & b[0]; /* add (assignment, because r is 0) */
r[1] = a2[1] & b[0];
r[2] = a2[2] & b[0];
r[3] = a2[3] & b[0];
r[4] = a2[4] & b[0];
r[5] = a2[5] & b[0];
r[6] = a2[6] & b[0];
r[7] = a2[7] & b[0];
a2[0] ^= a2[7]; /* reduce */
a2[2] ^= a2[7];
a2[3] ^= a2[7];
r[0] ^= a2[7] & b[1]; /* add */
r[1] ^= a2[0] & b[1];
r[2] ^= a2[1] & b[1];
r[3] ^= a2[2] & b[1];
r[4] ^= a2[3] & b[1];
r[5] ^= a2[4] & b[1];
r[6] ^= a2[5] & b[1];
r[7] ^= a2[6] & b[1];
a2[7] ^= a2[6]; /* reduce */
a2[1] ^= a2[6];
a2[2] ^= a2[6];
r[0] ^= a2[6] & b[2]; /* add */
r[1] ^= a2[7] & b[2];
r[2] ^= a2[0] & b[2];
r[3] ^= a2[1] & b[2];
r[4] ^= a2[2] & b[2];
r[5] ^= a2[3] & b[2];
r[6] ^= a2[4] & b[2];
r[7] ^= a2[5] & b[2];
a2[6] ^= a2[5]; /* reduce */
a2[0] ^= a2[5];
a2[1] ^= a2[5];
r[0] ^= a2[5] & b[3]; /* add */
r[1] ^= a2[6] & b[3];
r[2] ^= a2[7] & b[3];
r[3] ^= a2[0] & b[3];
r[4] ^= a2[1] & b[3];
r[5] ^= a2[2] & b[3];
r[6] ^= a2[3] & b[3];
r[7] ^= a2[4] & b[3];
a2[5] ^= a2[4]; /* reduce */
a2[7] ^= a2[4];
a2[0] ^= a2[4];
r[0] ^= a2[4] & b[4]; /* add */
r[1] ^= a2[5] & b[4];
r[2] ^= a2[6] & b[4];
r[3] ^= a2[7] & b[4];
r[4] ^= a2[0] & b[4];
r[5] ^= a2[1] & b[4];
r[6] ^= a2[2] & b[4];
r[7] ^= a2[3] & b[4];
a2[4] ^= a2[3]; /* reduce */
a2[6] ^= a2[3];
a2[7] ^= a2[3];
r[0] ^= a2[3] & b[5]; /* add */
r[1] ^= a2[4] & b[5];
r[2] ^= a2[5] & b[5];
r[3] ^= a2[6] & b[5];
r[4] ^= a2[7] & b[5];
r[5] ^= a2[0] & b[5];
r[6] ^= a2[1] & b[5];
r[7] ^= a2[2] & b[5];
a2[3] ^= a2[2]; /* reduce */
a2[5] ^= a2[2];
a2[6] ^= a2[2];
r[0] ^= a2[2] & b[6]; /* add */
r[1] ^= a2[3] & b[6];
r[2] ^= a2[4] & b[6];
r[3] ^= a2[5] & b[6];
r[4] ^= a2[6] & b[6];
r[5] ^= a2[7] & b[6];
r[6] ^= a2[0] & b[6];
r[7] ^= a2[1] & b[6];
a2[2] ^= a2[1]; /* reduce */
a2[4] ^= a2[1];
a2[5] ^= a2[1];
r[0] ^= a2[1] & b[7]; /* add */
r[1] ^= a2[2] & b[7];
r[2] ^= a2[3] & b[7];
r[3] ^= a2[4] & b[7];
r[4] ^= a2[5] & b[7];
r[5] ^= a2[6] & b[7];
r[6] ^= a2[7] & b[7];
r[7] ^= a2[0] & b[7];
memzero(a2, sizeof(a2));
}
/*
* Square `x` in GF(2^8) and write the result to `r`. `r` and `x` may overlap.
*/
static void gf256_square(uint32_t r[8], const uint32_t x[8]) {
uint32_t r8 = 0, r10 = 0, r12 = 0, r14 = 0;
/* Use the Freshman's Dream rule to square the polynomial
* Assignments are done from 7 downto 0, because this allows the user
* to execute this function in-place (e.g. `gf256_square(r, r);`).
*/
r14 = x[7];
r12 = x[6];
r10 = x[5];
r8 = x[4];
r[6] = x[3];
r[4] = x[2];
r[2] = x[1];
r[0] = x[0];
/* Reduce with x^8 + x^4 + x^3 + x + 1 until order is less than 8 */
r[7] = r14; /* r[7] was 0 */
r[6] ^= r14;
r10 ^= r14;
/* Skip, because r13 is always 0 */
r[4] ^= r12;
r[5] = r12; /* r[5] was 0 */
r[7] ^= r12;
r8 ^= r12;
/* Skip, because r11 is always 0 */
r[2] ^= r10;
r[3] = r10; /* r[3] was 0 */
r[5] ^= r10;
r[6] ^= r10;
r[1] = r14; /* r[1] was 0 */
r[2] ^= r14; /* Substitute r9 by r14 because they will always be equal*/
r[4] ^= r14;
r[5] ^= r14;
r[0] ^= r8;
r[1] ^= r8;
r[3] ^= r8;
r[4] ^= r8;
}
/*
* Invert `x` in GF(2^8) and write the result to `r`
*/
static void gf256_inv(uint32_t r[8], uint32_t x[8]) {
uint32_t y[8] = {0}, z[8] = {0};
gf256_square(y, x); // y = x^2
gf256_square(y, y); // y = x^4
gf256_square(r, y); // r = x^8
gf256_mul(z, r, x); // z = x^9
gf256_square(r, r); // r = x^16
gf256_mul(r, r, z); // r = x^25
gf256_square(r, r); // r = x^50
gf256_square(z, r); // z = x^100
gf256_square(z, z); // z = x^200
gf256_mul(r, r, z); // r = x^250
gf256_mul(r, r, y); // r = x^254
memzero(y, sizeof(y));
memzero(z, sizeof(z));
}
bool shamir_interpolate(uint8_t *result, uint8_t result_index,
const uint8_t *share_indices,
const uint8_t **share_values, uint8_t share_count,
size_t len) {
size_t i = 0, j = 0;
uint32_t x[8] = {0};
uint32_t xs[share_count][8];
memset(xs, 0, sizeof(xs));
uint32_t ys[share_count][8];
memset(ys, 0, sizeof(ys));
uint32_t num[8] = {~0}; /* num is the numerator (=1) */
uint32_t denom[8] = {0};
uint32_t tmp[8] = {0};
uint32_t secret[8] = {0};
bool ret = true;
if (len > SHAMIR_MAX_LEN) return false;
/* Collect the x and y values */
for (i = 0; i < share_count; i++) {
bitslice_setall(xs[i], share_indices[i]);
bitslice(ys[i], share_values[i], len);
}
bitslice_setall(x, result_index);
for (i = 0; i < share_count; i++) {
memcpy(tmp, x, sizeof(uint32_t[8]));
gf256_add(tmp, xs[i]);
gf256_mul(num, num, tmp);
}
/* Use Lagrange basis polynomials to calculate the secret coefficient */
for (i = 0; i < share_count; i++) {
/* The code below assumes that none of the share_indices are equal to
* result_index. We need to treat that as a special case. */
if (share_indices[i] != result_index) {
memcpy(denom, x, sizeof(denom));
gf256_add(denom, xs[i]);
} else {
bitslice_setall(denom, 1);
gf256_add(secret, ys[i]);
}
for (j = 0; j < share_count; j++) {
if (i == j) continue;
memcpy(tmp, xs[i], sizeof(uint32_t[8]));
gf256_add(tmp, xs[j]);
gf256_mul(denom, denom, tmp);
}
if ((denom[0] | denom[1] | denom[2] | denom[3] | denom[4] | denom[5] |
denom[6] | denom[7]) == 0) {
/* The share_indices are not unique. */
ret = false;
break;
}
gf256_inv(tmp, denom); /* inverted denominator */
gf256_mul(tmp, tmp, num); /* basis polynomial */
gf256_mul(tmp, tmp, ys[i]); /* scaled coefficient */
gf256_add(secret, tmp);
}
if (ret == true) {
unbitslice(result, secret, len);
}
memzero(x, sizeof(x));
memzero(xs, sizeof(xs));
memzero(ys, sizeof(ys));
memzero(num, sizeof(num));
memzero(denom, sizeof(denom));
memzero(tmp, sizeof(tmp));
memzero(secret, sizeof(secret));
return ret;
}