mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-12-30 10:08:18 +00:00
472 lines
14 KiB
C
472 lines
14 KiB
C
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
The redistribution and use of this software (with or without changes)
|
|
is allowed without the payment of fees or royalties provided that:
|
|
|
|
source code distributions include the above copyright notice, this
|
|
list of conditions and the following disclaimer;
|
|
|
|
binary distributions include the above copyright notice, this list
|
|
of conditions and the following disclaimer in their documentation.
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its operation, including, but not limited to, correctness
|
|
and fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 20/12/2007
|
|
|
|
This file provides fast multiplication in GF(128) as required by several
|
|
cryptographic authentication modes (see gfmul128.h).
|
|
*/
|
|
|
|
/* Speed critical loops can be unrolled to gain speed but consume more memory */
|
|
#if 1
|
|
# define UNROLL_LOOPS
|
|
#endif
|
|
|
|
/* The order of these includes matters */
|
|
#include "mode_hdr.h"
|
|
#include "gf128mul.h"
|
|
#include "gf_mul_lo.h"
|
|
|
|
#if defined( GF_MODE_LL )
|
|
# define mode _ll
|
|
#elif defined( GF_MODE_BL )
|
|
# define mode _bl
|
|
#elif defined( GF_MODE_LB )
|
|
# define mode _lb
|
|
#elif defined( GF_MODE_BB )
|
|
# define mode _bb
|
|
#else
|
|
# error mode is not defined
|
|
#endif
|
|
|
|
#if defined( GF_MODE_LL) || defined( GF_MODE_LB )
|
|
# define GF_INDEX(i) (i)
|
|
#else
|
|
# define GF_INDEX(i) (15 - (i))
|
|
#endif
|
|
|
|
/* A slow field multiplier */
|
|
|
|
void gf_mul(gf_t a, const gf_t b)
|
|
{ gf_t p[8] = {0};
|
|
uint8_t *q = NULL, ch = 0;
|
|
int i = 0;
|
|
|
|
copy_block_aligned(p[0], a);
|
|
for(i = 0; i < 7; ++i)
|
|
gf_mulx1(mode)(p[i + 1], p[i]);
|
|
|
|
q = (uint8_t*)(a == b ? p[0] : b);
|
|
memset(a, 0, GF_BYTE_LEN);
|
|
for(i = 15 ; ; )
|
|
{
|
|
ch = q[GF_INDEX(i)];
|
|
if(ch & X_0)
|
|
xor_block_aligned(a, a, p[0]);
|
|
if(ch & X_1)
|
|
xor_block_aligned(a, a, p[1]);
|
|
if(ch & X_2)
|
|
xor_block_aligned(a, a, p[2]);
|
|
if(ch & X_3)
|
|
xor_block_aligned(a, a, p[3]);
|
|
if(ch & X_4)
|
|
xor_block_aligned(a, a, p[4]);
|
|
if(ch & X_5)
|
|
xor_block_aligned(a, a, p[5]);
|
|
if(ch & X_6)
|
|
xor_block_aligned(a, a, p[6]);
|
|
if(ch & X_7)
|
|
xor_block_aligned(a, a, p[7]);
|
|
if(!i--)
|
|
break;
|
|
gf_mulx8(mode)(a);
|
|
}
|
|
}
|
|
|
|
#if defined( TABLES_64K )
|
|
|
|
/* This version uses 64k bytes of table space on the stack.
|
|
An input variable field value in a[] has to be multiplied
|
|
by a key value in g[] that changes far less frequently.
|
|
|
|
To do this a[] is split up into 16 smaller field values,
|
|
each one byte in length. For the 256 values of each of
|
|
these smaller values, we can precompute the result of
|
|
mulltiplying g by this field value. We can then combine
|
|
these values to provide the full multiply. So for each
|
|
of 16 bytes we have a table of 256 field values each of
|
|
16 bytes - 64k bytes in total.
|
|
*/
|
|
|
|
void init_64k_table(const gf_t g, gf_t64k_t t)
|
|
{ int i = 0, j = 0, k = 0;
|
|
|
|
/*
|
|
depending on the representation we have to process bits
|
|
within bytes high to low (0xe1 style ) or low to high
|
|
(0x87 style). We start by producing the powers x ,x^2
|
|
.. x^7 and put them in t[0][1], t[0][2] .. t[128] or in
|
|
t[128], t[64] .. t[1] depending on the bit order in use.
|
|
*/
|
|
|
|
/* clear the element for the zero field element */
|
|
memset(t[0][0], 0, GF_BYTE_LEN);
|
|
|
|
#if defined( GF_MODE_LL ) || defined( GF_MODE_BL )
|
|
|
|
/* g -> t[0][1], generate t[0][2] ... */
|
|
memcpy(t[0][1], g, GF_BYTE_LEN);
|
|
for(j = 1; j <= 64; j <<= 1)
|
|
gf_mulx1(mode)(t[0][j + j], t[0][j]);
|
|
#else
|
|
|
|
/* g -> t[0][128], generate t[0][64] ... */
|
|
memcpy(t[0][128], g, GF_BYTE_LEN);
|
|
for(j = 64; j >= 1; j >>= 1)
|
|
gf_mulx1(mode)(t[0][j], t[0][j + j]);
|
|
#endif
|
|
|
|
for( ; ; )
|
|
{
|
|
/* if { n } stands for the field value represented by
|
|
the integer n, we can express higher multiplies in
|
|
the table as follows:
|
|
|
|
1. g * { 3} = g * {2} ^ g * {1}
|
|
|
|
2. g * { 5} = g * {4} ^ g * {1}
|
|
g * { 6} = g * {4} ^ g * {2}
|
|
g * { 7} = g * {4} ^ g * {3}
|
|
|
|
3. g * { 9} = g * {8} ^ g * {1}
|
|
g * {10} = g * {8} ^ g * {2}
|
|
....
|
|
|
|
and so on. This is what the following loops do.
|
|
*/
|
|
for(j = 2; j < 256; j += j)
|
|
for(k = 1; k < j; ++k)
|
|
xor_block_aligned(t[i][j + k], t[i][j], t[i][k]);
|
|
|
|
if(++i == GF_BYTE_LEN) /* all 16 byte positions done */
|
|
return;
|
|
|
|
/* We now move to the next byte up and set up its eight
|
|
starting values by multiplying the values in the
|
|
lower table by x^8
|
|
*/
|
|
memset(t[i][0], 0, GF_BYTE_LEN);
|
|
for(j = 128; j > 0; j >>= 1)
|
|
{
|
|
memcpy(t[i][j], t[i - 1][j], GF_BYTE_LEN);
|
|
gf_mulx8(mode)(t[i][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define xor_64k(i,ap,t,r) xor_block_aligned(r, r, t[i][ap[GF_INDEX(i)]])
|
|
|
|
#if defined( UNROLL_LOOPS )
|
|
|
|
void gf_mul_64k(gf_t a, const gf_t64k_t t, gf_t r)
|
|
{ uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
xor_64k(15, ap, t, r); xor_64k(14, ap, t, r);
|
|
xor_64k(13, ap, t, r); xor_64k(12, ap, t, r);
|
|
xor_64k(11, ap, t, r); xor_64k(10, ap, t, r);
|
|
xor_64k( 9, ap, t, r); xor_64k( 8, ap, t, r);
|
|
xor_64k( 7, ap, t, r); xor_64k( 6, ap, t, r);
|
|
xor_64k( 5, ap, t, r); xor_64k( 4, ap, t, r);
|
|
xor_64k( 3, ap, t, r); xor_64k( 2, ap, t, r);
|
|
xor_64k( 1, ap, t, r); xor_64k( 0, ap, t, r);
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#else
|
|
|
|
void gf_mul_64k(gf_t a, const gf_t64k_t t, gf_t r)
|
|
{ int i = 0;
|
|
uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
for(i = 15; i >= 0; --i)
|
|
{
|
|
xor_64k(i,ap,t,r);
|
|
}
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined( TABLES_8K )
|
|
|
|
/* This version uses 8k bytes of table space on the stack.
|
|
An input field value in a[] has to be multiplied by a
|
|
key value in g[]. To do this a[] is split up into 32
|
|
smaller field values each 4-bits in length. For the
|
|
16 values of each of these smaller field values we can
|
|
precompute the result of mulltiplying g[] by the field
|
|
value in question. So for each of 32 nibbles we have a
|
|
table of 16 field values, each of 16 bytes - 8k bytes
|
|
in total.
|
|
*/
|
|
void init_8k_table(const gf_t g, gf_t8k_t t)
|
|
{ int i = 0, j = 0, k = 0;
|
|
|
|
/* do the low 4-bit nibble first - t[0][16] - and note
|
|
that the unit multiplier sits at 0x01 - t[0][1] in
|
|
the table. Then multiplies by x go at 2, 4, 8
|
|
*/
|
|
/* set the table elements for a zero multiplier */
|
|
memset(t[0][0], 0, GF_BYTE_LEN);
|
|
memset(t[1][0], 0, GF_BYTE_LEN);
|
|
|
|
#if defined( GF_MODE_LL ) || defined( GF_MODE_BL )
|
|
|
|
/* t[0][1] = g, compute t[0][2], t[0][4], t[0][8] */
|
|
memcpy(t[0][1], g, GF_BYTE_LEN);
|
|
for(j = 1; j <= 4; j <<= 1)
|
|
gf_mulx1(mode)(t[0][j + j], t[0][j]);
|
|
/* t[1][1] = t[0][1] * x^4 = t[0][8] * x */
|
|
gf_mulx1(mode)(t[1][1], t[0][8]);
|
|
for(j = 1; j <= 4; j <<= 1)
|
|
gf_mulx1(mode)(t[1][j + j], t[1][j]);
|
|
#else
|
|
|
|
/* g -> t[0][8], compute t[0][4], t[0][2], t[0][1] */
|
|
memcpy(t[1][8], g, GF_BYTE_LEN);
|
|
for(j = 4; j >= 1; j >>= 1)
|
|
gf_mulx1(mode)(t[1][j], t[1][j + j]);
|
|
/* t[1][1] = t[0][1] * x^4 = t[0][8] * x */
|
|
gf_mulx1(mode)(t[0][8], t[1][1]);
|
|
for(j = 4; j >= 1; j >>= 1)
|
|
gf_mulx1(mode)(t[0][j], t[0][j + j]);
|
|
#endif
|
|
|
|
for( ; ; )
|
|
{
|
|
for(j = 2; j < 16; j += j)
|
|
for(k = 1; k < j; ++k)
|
|
xor_block_aligned(t[i][j + k], t[i][j], t[i][k]);
|
|
|
|
if(++i == 2 * GF_BYTE_LEN)
|
|
return;
|
|
|
|
if(i > 1)
|
|
{
|
|
memset(t[i][0], 0, GF_BYTE_LEN);
|
|
for(j = 8; j > 0; j >>= 1)
|
|
{
|
|
memcpy(t[i][j], t[i - 2][j], GF_BYTE_LEN);
|
|
gf_mulx8(mode)(t[i][j]);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#define xor_8k(i,ap,t,r) \
|
|
xor_block_aligned(r, r, t[i + i][ap[GF_INDEX(i)] & 15]); \
|
|
xor_block_aligned(r, r, t[i + i + 1][ap[GF_INDEX(i)] >> 4])
|
|
|
|
#if defined( UNROLL_LOOPS )
|
|
|
|
void gf_mul_8k(gf_t a, const gf_t8k_t t, gf_t r)
|
|
{ uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
xor_8k(15, ap, t, r); xor_8k(14, ap, t, r);
|
|
xor_8k(13, ap, t, r); xor_8k(12, ap, t, r);
|
|
xor_8k(11, ap, t, r); xor_8k(10, ap, t, r);
|
|
xor_8k( 9, ap, t, r); xor_8k( 8, ap, t, r);
|
|
xor_8k( 7, ap, t, r); xor_8k( 6, ap, t, r);
|
|
xor_8k( 5, ap, t, r); xor_8k( 4, ap, t, r);
|
|
xor_8k( 3, ap, t, r); xor_8k( 2, ap, t, r);
|
|
xor_8k( 1, ap, t, r); xor_8k( 0, ap, t, r);
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#else
|
|
|
|
void gf_mul_8k(gf_t a, const gf_t8k_t t, gf_t r)
|
|
{ int i = 0;
|
|
uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
for(i = 15; i >= 0; --i)
|
|
{
|
|
xor_8k(i,ap,t,r);
|
|
}
|
|
memcpy(a, r, GF_BYTE_LEN);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined( TABLES_4K )
|
|
|
|
/* This version uses 4k bytes of table space on the stack.
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
|
value in GF(128). If we consider a GF(128) value in a
|
|
single byte, we can construct a table of the 256 16
|
|
byte values that result from multiplying g by the 256
|
|
values of this byte. This requires 4096 bytes.
|
|
|
|
If we take the highest byte in the buffer and use this
|
|
table to multiply it by g, we then have to multiply it
|
|
by x^120 to get the final value. For the next highest
|
|
byte the result has to be multiplied by x^112 and so on.
|
|
|
|
But we can do this by accumulating the result in an
|
|
accumulator starting with the result for the top byte.
|
|
We repeatedly multiply the accumulator value by x^8 and
|
|
then add in (i.e. xor) the 16 bytes of the next lower
|
|
byte in the buffer, stopping when we reach the lowest
|
|
byte. This requires a 4096 byte table.
|
|
*/
|
|
|
|
void init_4k_table(const gf_t g, gf_t4k_t t)
|
|
{ int j = 0, k = 0;
|
|
|
|
memset(t[0], 0, GF_BYTE_LEN);
|
|
|
|
#if defined( GF_MODE_LL ) || defined( GF_MODE_BL )
|
|
|
|
memcpy(t[1], g, GF_BYTE_LEN);
|
|
for(j = 1; j <= 64; j <<= 1)
|
|
gf_mulx1(mode)(t[j + j], t[j]);
|
|
#else
|
|
|
|
memcpy(t[128], g, GF_BYTE_LEN);
|
|
for(j = 64; j >= 1; j >>= 1)
|
|
gf_mulx1(mode)(t[j], t[j + j]);
|
|
#endif
|
|
|
|
for(j = 2; j < 256; j += j)
|
|
for(k = 1; k < j; ++k)
|
|
xor_block_aligned(t[j + k], t[j], t[k]);
|
|
}
|
|
|
|
#define xor_4k(i,ap,t,r) gf_mulx8(mode)(r); xor_block_aligned(r, r, t[ap[GF_INDEX(i)]])
|
|
|
|
#if defined( UNROLL_LOOPS )
|
|
|
|
void gf_mul_4k(gf_t a, const gf_t4k_t t, gf_t r)
|
|
{ uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
xor_4k(15, ap, t, r); xor_4k(14, ap, t, r);
|
|
xor_4k(13, ap, t, r); xor_4k(12, ap, t, r);
|
|
xor_4k(11, ap, t, r); xor_4k(10, ap, t, r);
|
|
xor_4k( 9, ap, t, r); xor_4k( 8, ap, t, r);
|
|
xor_4k( 7, ap, t, r); xor_4k( 6, ap, t, r);
|
|
xor_4k( 5, ap, t, r); xor_4k( 4, ap, t, r);
|
|
xor_4k( 3, ap, t, r); xor_4k( 2, ap, t, r);
|
|
xor_4k( 1, ap, t, r); xor_4k( 0, ap, t, r);
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#else
|
|
|
|
void gf_mul_4k(gf_t a, const gf_t4k_t t, gf_t r)
|
|
{ int i = 15;
|
|
uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
for(i = 15; i >=0; --i)
|
|
{
|
|
xor_4k(i, ap, t, r);
|
|
}
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined( TABLES_256 )
|
|
|
|
/* This version uses 256 bytes of table space on the stack.
|
|
A 16 byte buffer has to be multiplied by a 16 byte key
|
|
value in GF(128). If we consider a GF(128) value in a
|
|
single 4-bit nibble, we can construct a table of the 16
|
|
16 byte values that result from the 16 values of this
|
|
byte. This requires 256 bytes. If we take the highest
|
|
4-bit nibble in the buffer and use this table to get the
|
|
result, we then have to multiply by x^124 to get the
|
|
final value. For the next highest byte the result has to
|
|
be multiplied by x^120 and so on. But we can do this by
|
|
accumulating the result in an accumulator starting with
|
|
the result for the top nibble. We repeatedly multiply
|
|
the accumulator value by x^4 and then add in (i.e. xor)
|
|
the 16 bytes of the next lower nibble in the buffer,
|
|
stopping when we reach the lowest nibble. This uses a
|
|
256 byte table.
|
|
*/
|
|
|
|
void init_256_table(const gf_t g, gf_t256_t t)
|
|
{ int j = 0, k = 0;
|
|
|
|
memset(t[0], 0, GF_BYTE_LEN);
|
|
|
|
#if defined( GF_MODE_LL ) || defined( GF_MODE_BL )
|
|
|
|
memcpy(t[1], g, GF_BYTE_LEN);
|
|
for(j = 1; j <= 4; j <<= 1)
|
|
gf_mulx1(mode)(t[j + j], t[j]);
|
|
#else
|
|
|
|
memcpy(t[8], g, GF_BYTE_LEN);
|
|
for(j = 4; j >= 1; j >>= 1)
|
|
gf_mulx1(mode)(t[j], t[j + j]);
|
|
#endif
|
|
|
|
for(j = 2; j < 16; j += j)
|
|
for(k = 1; k < j; ++k)
|
|
xor_block_aligned(t[j + k], t[j], t[k]);
|
|
}
|
|
|
|
#define x_lo(i,ap,t,r) gf_mulx4(mode)(r); xor_block_aligned(r, r, t[ap[GF_INDEX(i)] & 0x0f])
|
|
#define x_hi(i,ap,t,r) gf_mulx4(mode)(r); xor_block_aligned(r, r, t[ap[GF_INDEX(i)] >> 4])
|
|
|
|
#if defined( GF_MODE_LL ) || defined( GF_MODE_BL )
|
|
#define xor_256(a,b,c,d) x_hi(a,b,c,d); x_lo(a,b,c,d)
|
|
#else
|
|
#define xor_256(a,b,c,d) x_lo(a,b,c,d); x_hi(a,b,c,d)
|
|
#endif
|
|
|
|
#if defined( UNROLL_LOOPS )
|
|
|
|
void gf_mul_256(gf_t a, const gf_t256_t t, gf_t r)
|
|
{ uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
xor_256(15, ap, t, r); xor_256(14, ap, t, r);
|
|
xor_256(13, ap, t, r); xor_256(12, ap, t, r);
|
|
xor_256(11, ap, t, r); xor_256(10, ap, t, r);
|
|
xor_256( 9, ap, t, r); xor_256( 8, ap, t, r);
|
|
xor_256( 7, ap, t, r); xor_256( 6, ap, t, r);
|
|
xor_256( 5, ap, t, r); xor_256( 4, ap, t, r);
|
|
xor_256( 3, ap, t, r); xor_256( 2, ap, t, r);
|
|
xor_256( 1, ap, t, r); xor_256( 0, ap, t, r);
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#else
|
|
|
|
void gf_mul_256(gf_t a, const gf_t256_t t, gf_t r)
|
|
{ int i = 0;
|
|
uint8_t *ap = (uint8_t*)a;
|
|
memset(r, 0, GF_BYTE_LEN);
|
|
for(i = 15; i >= 0; --i)
|
|
{
|
|
xor_256(i, ap, t, r);
|
|
}
|
|
copy_block_aligned(a, r);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|