1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-18 05:28:40 +00:00
trezor-firmware/trezorlib/cosi.py
2018-08-10 15:48:39 +02:00

104 lines
4.0 KiB
Python

# This file is part of the Trezor project.
#
# Copyright (C) 2012-2018 SatoshiLabs and contributors
#
# This library is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License version 3
# as published by the Free Software Foundation.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the License along with this library.
# If not, see <https://www.gnu.org/licenses/lgpl-3.0.html>.
from functools import reduce
import binascii
from typing import Iterable, Tuple
from . import messages
from .tools import expect
from trezorlib import _ed25519
# XXX, these could be NewType's, but that would infect users of the cosi module with these types as well.
# Unsure if we want that.
Ed25519PrivateKey = bytes
Ed25519PublicPoint = bytes
Ed25519Signature = bytes
def combine_keys(pks: Iterable[Ed25519PublicPoint]) -> Ed25519PublicPoint:
"""Combine a list of Ed25519 points into a "global" CoSi key."""
P = [_ed25519.decodepoint(pk) for pk in pks]
combine = reduce(_ed25519.edwards, P)
return Ed25519PublicPoint(_ed25519.encodepoint(combine))
def combine_sig(global_R: Ed25519PublicPoint, sigs: Iterable[Ed25519Signature]) -> Ed25519Signature:
"""Combine a list of signatures into a single CoSi signature."""
S = [_ed25519.decodeint(si) for si in sigs]
s = sum(S) % _ed25519.l
sig = global_R + _ed25519.encodeint(s)
return Ed25519Signature(sig)
def get_nonce(sk: Ed25519PrivateKey, data: bytes, ctr: int = 0) -> Tuple[int, Ed25519PublicPoint]:
"""Calculate CoSi nonces for given data.
These differ from Ed25519 deterministic nonces in that there is a counter appended at end.
Returns both the private point `r` and the partial signature `R`.
`r` is returned for performance reasons: :func:`sign_with_privkey`
takes it as its `nonce` argument so that it doesn't repeat the `get_nonce` call.
`R` should be combined with other partial signatures through :func:`combine_keys`
to obtain a "global commitment".
"""
h = _ed25519.H(sk)
b = _ed25519.b
r = _ed25519.Hint(bytes([h[i] for i in range(b >> 3, b >> 2)]) + data + binascii.unhexlify('%08x' % ctr))
R = _ed25519.scalarmult(_ed25519.B, r)
return r, Ed25519PublicPoint(_ed25519.encodepoint(R))
def verify(signature: Ed25519Signature, digest: bytes, pub_key: Ed25519PublicPoint) -> None:
"""Verify Ed25519 signature. Raise exception if the signature is invalid."""
# XXX this *might* change to bool function
_ed25519.checkvalid(signature, digest, pub_key)
def pubkey_from_privkey(privkey: Ed25519PrivateKey) -> Ed25519PublicPoint:
"""Interpret 32 bytes of data as an Ed25519 private key.
Calculate and return the corresponding public key.
"""
return Ed25519PublicPoint(_ed25519.publickey(privkey))
def sign_with_privkey(digest: bytes, privkey: Ed25519PrivateKey,
global_pubkey: Ed25519PublicPoint,
nonce: int,
global_commit: Ed25519PublicPoint) -> Ed25519Signature:
"""Create a CoSi signature of `digest` with the supplied private key.
This function needs to know the global public key and global commitment.
"""
h = _ed25519.H(privkey)
b = _ed25519.b
a = 2 ** (b - 2) + sum(2 ** i * _ed25519.bit(h, i) for i in range(3, b - 2))
S = (nonce + _ed25519.Hint(global_commit + global_pubkey + digest) * a) % _ed25519.l
return Ed25519Signature(_ed25519.encodeint(S))
### Client functions ###
@expect(messages.CosiCommitment)
def commit(client, n, data):
return client.call(messages.CosiCommit(address_n=n, data=data))
@expect(messages.CosiSignature)
def sign(client, n, data, global_commitment, global_pubkey):
return client.call(messages.CosiSign(address_n=n, data=data, global_commitment=global_commitment, global_pubkey=global_pubkey))