mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-18 11:21:11 +00:00
180 lines
6.6 KiB
C
180 lines
6.6 KiB
C
/**
|
|
* Copyright (c) 2013-2014 Tomas Dzetkulic
|
|
* Copyright (c) 2013-2014 Pavol Rusnak
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "pbkdf2.h"
|
|
#include <string.h>
|
|
#include "hmac.h"
|
|
#include "memzero.h"
|
|
#include "sha2.h"
|
|
|
|
void pbkdf2_hmac_sha256_Init(PBKDF2_HMAC_SHA256_CTX *pctx, const uint8_t *pass,
|
|
int passlen, const uint8_t *salt, int saltlen,
|
|
uint32_t blocknr) {
|
|
SHA256_CTX ctx;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
REVERSE32(blocknr, blocknr);
|
|
#endif
|
|
|
|
hmac_sha256_prepare(pass, passlen, pctx->odig, pctx->idig);
|
|
memzero(pctx->g, sizeof(pctx->g));
|
|
pctx->g[8] = 0x80000000;
|
|
pctx->g[15] = (SHA256_BLOCK_LENGTH + SHA256_DIGEST_LENGTH) * 8;
|
|
|
|
memcpy(ctx.state, pctx->idig, sizeof(pctx->idig));
|
|
ctx.bitcount = SHA256_BLOCK_LENGTH * 8;
|
|
sha256_Update(&ctx, salt, saltlen);
|
|
sha256_Update(&ctx, (uint8_t *)&blocknr, sizeof(blocknr));
|
|
sha256_Final(&ctx, (uint8_t *)pctx->g);
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
for (uint32_t k = 0; k < SHA256_DIGEST_LENGTH / sizeof(uint32_t); k++) {
|
|
REVERSE32(pctx->g[k], pctx->g[k]);
|
|
}
|
|
#endif
|
|
sha256_Transform(pctx->odig, pctx->g, pctx->g);
|
|
memcpy(pctx->f, pctx->g, SHA256_DIGEST_LENGTH);
|
|
pctx->first = 1;
|
|
}
|
|
|
|
void pbkdf2_hmac_sha256_Update(PBKDF2_HMAC_SHA256_CTX *pctx,
|
|
uint32_t iterations) {
|
|
for (uint32_t i = pctx->first; i < iterations; i++) {
|
|
sha256_Transform(pctx->idig, pctx->g, pctx->g);
|
|
sha256_Transform(pctx->odig, pctx->g, pctx->g);
|
|
for (uint32_t j = 0; j < SHA256_DIGEST_LENGTH / sizeof(uint32_t); j++) {
|
|
pctx->f[j] ^= pctx->g[j];
|
|
}
|
|
}
|
|
pctx->first = 0;
|
|
}
|
|
|
|
void pbkdf2_hmac_sha256_Final(PBKDF2_HMAC_SHA256_CTX *pctx, uint8_t *key) {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
for (uint32_t k = 0; k < SHA256_DIGEST_LENGTH / sizeof(uint32_t); k++) {
|
|
REVERSE32(pctx->f[k], pctx->f[k]);
|
|
}
|
|
#endif
|
|
memcpy(key, pctx->f, SHA256_DIGEST_LENGTH);
|
|
memzero(pctx, sizeof(PBKDF2_HMAC_SHA256_CTX));
|
|
}
|
|
|
|
void pbkdf2_hmac_sha256(const uint8_t *pass, int passlen, const uint8_t *salt,
|
|
int saltlen, uint32_t iterations, uint8_t *key,
|
|
int keylen) {
|
|
uint32_t last_block_size = keylen % SHA256_DIGEST_LENGTH;
|
|
uint32_t blocks_count = keylen / SHA256_DIGEST_LENGTH;
|
|
if (last_block_size) {
|
|
blocks_count++;
|
|
} else {
|
|
last_block_size = SHA256_DIGEST_LENGTH;
|
|
}
|
|
for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) {
|
|
PBKDF2_HMAC_SHA256_CTX pctx;
|
|
pbkdf2_hmac_sha256_Init(&pctx, pass, passlen, salt, saltlen, blocknr);
|
|
pbkdf2_hmac_sha256_Update(&pctx, iterations);
|
|
uint8_t digest[SHA256_DIGEST_LENGTH];
|
|
pbkdf2_hmac_sha256_Final(&pctx, digest);
|
|
uint32_t key_offset = (blocknr - 1) * SHA256_DIGEST_LENGTH;
|
|
if (blocknr < blocks_count) {
|
|
memcpy(key + key_offset, digest, SHA256_DIGEST_LENGTH);
|
|
} else {
|
|
memcpy(key + key_offset, digest, last_block_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
void pbkdf2_hmac_sha512_Init(PBKDF2_HMAC_SHA512_CTX *pctx, const uint8_t *pass,
|
|
int passlen, const uint8_t *salt, int saltlen,
|
|
uint32_t blocknr) {
|
|
SHA512_CTX ctx;
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
REVERSE32(blocknr, blocknr);
|
|
#endif
|
|
|
|
hmac_sha512_prepare(pass, passlen, pctx->odig, pctx->idig);
|
|
memzero(pctx->g, sizeof(pctx->g));
|
|
pctx->g[8] = 0x8000000000000000;
|
|
pctx->g[15] = (SHA512_BLOCK_LENGTH + SHA512_DIGEST_LENGTH) * 8;
|
|
|
|
memcpy(ctx.state, pctx->idig, sizeof(pctx->idig));
|
|
ctx.bitcount[0] = SHA512_BLOCK_LENGTH * 8;
|
|
ctx.bitcount[1] = 0;
|
|
sha512_Update(&ctx, salt, saltlen);
|
|
sha512_Update(&ctx, (uint8_t *)&blocknr, sizeof(blocknr));
|
|
sha512_Final(&ctx, (uint8_t *)pctx->g);
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
for (uint32_t k = 0; k < SHA512_DIGEST_LENGTH / sizeof(uint64_t); k++) {
|
|
REVERSE64(pctx->g[k], pctx->g[k]);
|
|
}
|
|
#endif
|
|
sha512_Transform(pctx->odig, pctx->g, pctx->g);
|
|
memcpy(pctx->f, pctx->g, SHA512_DIGEST_LENGTH);
|
|
pctx->first = 1;
|
|
}
|
|
|
|
void pbkdf2_hmac_sha512_Update(PBKDF2_HMAC_SHA512_CTX *pctx,
|
|
uint32_t iterations) {
|
|
for (uint32_t i = pctx->first; i < iterations; i++) {
|
|
sha512_Transform(pctx->idig, pctx->g, pctx->g);
|
|
sha512_Transform(pctx->odig, pctx->g, pctx->g);
|
|
for (uint32_t j = 0; j < SHA512_DIGEST_LENGTH / sizeof(uint64_t); j++) {
|
|
pctx->f[j] ^= pctx->g[j];
|
|
}
|
|
}
|
|
pctx->first = 0;
|
|
}
|
|
|
|
void pbkdf2_hmac_sha512_Final(PBKDF2_HMAC_SHA512_CTX *pctx, uint8_t *key) {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
for (uint32_t k = 0; k < SHA512_DIGEST_LENGTH / sizeof(uint64_t); k++) {
|
|
REVERSE64(pctx->f[k], pctx->f[k]);
|
|
}
|
|
#endif
|
|
memcpy(key, pctx->f, SHA512_DIGEST_LENGTH);
|
|
memzero(pctx, sizeof(PBKDF2_HMAC_SHA512_CTX));
|
|
}
|
|
|
|
void pbkdf2_hmac_sha512(const uint8_t *pass, int passlen, const uint8_t *salt,
|
|
int saltlen, uint32_t iterations, uint8_t *key,
|
|
int keylen) {
|
|
uint32_t last_block_size = keylen % SHA512_DIGEST_LENGTH;
|
|
uint32_t blocks_count = keylen / SHA512_DIGEST_LENGTH;
|
|
if (last_block_size) {
|
|
blocks_count++;
|
|
} else {
|
|
last_block_size = SHA512_DIGEST_LENGTH;
|
|
}
|
|
for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) {
|
|
PBKDF2_HMAC_SHA512_CTX pctx;
|
|
pbkdf2_hmac_sha512_Init(&pctx, pass, passlen, salt, saltlen, blocknr);
|
|
pbkdf2_hmac_sha512_Update(&pctx, iterations);
|
|
uint8_t digest[SHA512_DIGEST_LENGTH];
|
|
pbkdf2_hmac_sha512_Final(&pctx, digest);
|
|
uint32_t key_offset = (blocknr - 1) * SHA512_DIGEST_LENGTH;
|
|
if (blocknr < blocks_count) {
|
|
memcpy(key + key_offset, digest, SHA512_DIGEST_LENGTH);
|
|
} else {
|
|
memcpy(key + key_offset, digest, last_block_size);
|
|
}
|
|
}
|
|
}
|