mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-11-27 01:48:17 +00:00
11d14a3946
- bn_addmod: now only guarantees result < 2*prime. - bn_add: new test - bn_mult_half: fixed normalization of prime -> 0.
362 lines
8.7 KiB
Python
Executable File
362 lines
8.7 KiB
Python
Executable File
#!/usr/bin/python
|
|
import ctypes as c
|
|
import random
|
|
import ecdsa
|
|
import hashlib
|
|
import binascii
|
|
import os
|
|
import pytest
|
|
|
|
def bytes2num(s):
|
|
res = 0
|
|
for i, b in enumerate(reversed(bytearray(s))):
|
|
res += b << (i * 8)
|
|
return res
|
|
|
|
|
|
curves = {
|
|
'nist256p1': ecdsa.curves.NIST256p,
|
|
'secp256k1': ecdsa.curves.SECP256k1
|
|
}
|
|
|
|
random_iters = int(os.environ.get('ITERS', 1))
|
|
|
|
lib = c.cdll.LoadLibrary('./libtrezor-crypto.so')
|
|
|
|
lib.get_curve_by_name.restype = c.c_void_p
|
|
|
|
BIGNUM = c.c_uint32 * 9
|
|
|
|
|
|
class Random(random.Random):
|
|
def randbytes(self, n):
|
|
buf = (c.c_uint8 * n)()
|
|
for i in range(n):
|
|
buf[i] = self.randrange(0, 256)
|
|
return buf
|
|
|
|
def randpoint(self, curve):
|
|
k = self.randrange(0, curve.order)
|
|
return k * curve.generator
|
|
|
|
|
|
def int2bn(x, bn_type=BIGNUM):
|
|
b = bn_type()
|
|
b._int = x
|
|
for i in range(len(b)):
|
|
b[i] = x % (1 << 30)
|
|
x = x >> 30
|
|
return b
|
|
|
|
|
|
def bn2int(b):
|
|
x = 0
|
|
for i in range(len(b)):
|
|
x += (b[i] << (30 * i))
|
|
return x
|
|
|
|
|
|
@pytest.fixture(params=range(random_iters))
|
|
def r(request):
|
|
seed = request.param
|
|
return Random(seed + int(os.environ.get('SEED', 0)))
|
|
|
|
|
|
@pytest.fixture(params=list(sorted(curves)))
|
|
def curve(request):
|
|
name = request.param
|
|
curve_ptr = lib.get_curve_by_name(name)
|
|
assert curve_ptr, 'curve {} not found'.format(name)
|
|
curve_obj = curves[name]
|
|
curve_obj.ptr = c.c_void_p(curve_ptr)
|
|
curve_obj.p = curve_obj.curve.p() # shorthand
|
|
return curve_obj
|
|
|
|
|
|
def test_inverse(curve, r):
|
|
x = r.randrange(1, curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_inverse(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
y_ = ecdsa.numbertheory.inverse_mod(x, curve.p)
|
|
assert y == y_
|
|
|
|
|
|
def test_is_less(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
y = r.randrange(0, curve.p)
|
|
x_ = int2bn(x)
|
|
y_ = int2bn(y)
|
|
|
|
res = lib.bn_is_less(x_, y_)
|
|
assert res == (x < y)
|
|
|
|
res = lib.bn_is_less(y_, x_)
|
|
assert res == (y < x)
|
|
|
|
|
|
def test_is_equal(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
y = r.randrange(0, curve.p)
|
|
x_ = int2bn(x)
|
|
y_ = int2bn(y)
|
|
|
|
assert lib.bn_is_equal(x_, y_) == (x == y)
|
|
assert lib.bn_is_equal(x_, x_) == 1
|
|
assert lib.bn_is_equal(y_, y_) == 1
|
|
|
|
|
|
def test_is_zero(curve, r):
|
|
x = r.randrange(0, curve.p);
|
|
assert lib.bn_is_zero(int2bn(x)) == (not x)
|
|
|
|
|
|
def test_simple_comparisons():
|
|
assert lib.bn_is_zero(int2bn(0)) == 1
|
|
assert lib.bn_is_zero(int2bn(1)) == 0
|
|
|
|
assert lib.bn_is_less(int2bn(0), int2bn(0)) == 0
|
|
assert lib.bn_is_less(int2bn(1), int2bn(0)) == 0
|
|
assert lib.bn_is_less(int2bn(0), int2bn(1)) == 1
|
|
|
|
assert lib.bn_is_equal(int2bn(0), int2bn(0)) == 1
|
|
assert lib.bn_is_equal(int2bn(1), int2bn(0)) == 0
|
|
assert lib.bn_is_equal(int2bn(0), int2bn(1)) == 0
|
|
|
|
|
|
def test_mult_half(curve, r):
|
|
x = r.randrange(0, 2*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_mult_half(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
if y >= curve.p:
|
|
y -= curve.p
|
|
half = ecdsa.numbertheory.inverse_mod(2, curve.p)
|
|
assert y == (x * half) % curve.p
|
|
|
|
|
|
def test_subtractmod(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z = int2bn(0)
|
|
lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p))
|
|
z = bn2int(z)
|
|
z_ = x + 2*curve.p - y
|
|
assert z == z_
|
|
|
|
|
|
def test_subtract2(r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
x, y = max(x, y), min(x, y)
|
|
z = int2bn(0)
|
|
lib.bn_subtract(int2bn(x), int2bn(y), z)
|
|
z = bn2int(z)
|
|
z_ = x - y
|
|
assert z == z_
|
|
|
|
|
|
def test_add(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z_ = x + y
|
|
z = int2bn(x)
|
|
lib.bn_add(z, int2bn(y))
|
|
z = bn2int(z)
|
|
|
|
assert z == z_
|
|
|
|
|
|
def test_addmod(curve, r):
|
|
x = r.randrange(0, 2 ** 256)
|
|
y = r.randrange(0, 2 ** 256)
|
|
z_ = (x + y) % curve.p
|
|
z = int2bn(x)
|
|
lib.bn_addmod(z, int2bn(y), int2bn(curve.p))
|
|
z = bn2int(z)
|
|
if z >= curve.p:
|
|
z = z - curve.p
|
|
assert z == z_
|
|
|
|
|
|
def test_multiply(curve, r):
|
|
k = r.randrange(0, 2 * curve.p)
|
|
x = r.randrange(0, 2 * curve.p)
|
|
z = (k * x) % curve.p
|
|
k = int2bn(k)
|
|
z_ = int2bn(x)
|
|
p_ = int2bn(curve.p)
|
|
lib.bn_multiply(k, z_, p_)
|
|
z_ = bn2int(z_)
|
|
assert z_ < 2*curve.p
|
|
if z_ >= curve.p:
|
|
z_ = z_ - curve.p
|
|
assert z_ == z
|
|
|
|
|
|
def test_multiply1(curve, r):
|
|
k = r.randrange(0, 2 * curve.p)
|
|
x = r.randrange(0, 2 * curve.p)
|
|
kx = k * x
|
|
res = int2bn(0, bn_type=(c.c_uint32 * 18))
|
|
lib.bn_multiply_long(int2bn(k), int2bn(x), res)
|
|
res = bn2int(res)
|
|
assert res == kx
|
|
|
|
|
|
def test_multiply2(curve, r):
|
|
x = int2bn(0)
|
|
s = r.randrange(0, 2 ** 526)
|
|
res = int2bn(s, bn_type=(c.c_uint32 * 18))
|
|
prime = int2bn(curve.p)
|
|
lib.bn_multiply_reduce(x, res, prime)
|
|
|
|
x = bn2int(x) % curve.p
|
|
x_ = s % curve.p
|
|
|
|
assert x == x_
|
|
|
|
|
|
def test_fast_mod(curve, r):
|
|
x = r.randrange(0, 128*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_fast_mod(y, int2bn(curve.p))
|
|
y = bn2int(y)
|
|
assert y < 2*curve.p
|
|
if y >= curve.p:
|
|
y -= curve.p
|
|
assert x % curve.p == y
|
|
|
|
|
|
def test_mod(curve, r):
|
|
x = r.randrange(0, 2*curve.p)
|
|
y = int2bn(x)
|
|
lib.bn_mod(y, int2bn(curve.p))
|
|
assert bn2int(y) == x % curve.p
|
|
|
|
POINT = BIGNUM * 2
|
|
to_POINT = lambda p: POINT(int2bn(p.x()), int2bn(p.y()))
|
|
from_POINT = lambda p: (bn2int(p[0]), bn2int(p[1]))
|
|
|
|
JACOBIAN = BIGNUM * 3
|
|
to_JACOBIAN = lambda jp: JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
|
|
from_JACOBIAN = lambda p: (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
|
|
|
|
|
|
def test_point_multiply(curve, r):
|
|
p = r.randpoint(curve)
|
|
k = r.randrange(0, 2 ** 256)
|
|
kp = k * p
|
|
res = POINT(int2bn(0), int2bn(0))
|
|
lib.point_multiply(curve.ptr, int2bn(k), to_POINT(p), res)
|
|
res = from_POINT(res)
|
|
assert res == (kp.x(), kp.y())
|
|
|
|
|
|
def test_point_add(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = r.randpoint(curve)
|
|
#print '-' * 80
|
|
q = p1 + p2
|
|
q1 = to_POINT(p1)
|
|
q2 = to_POINT(p2)
|
|
lib.point_add(curve.ptr, q1, q2)
|
|
q_ = from_POINT(q2)
|
|
assert q_ == (q.x(), q.y())
|
|
|
|
|
|
def test_point_double(curve, r):
|
|
p = r.randpoint(curve)
|
|
q = p.double()
|
|
q_ = to_POINT(p)
|
|
lib.point_double(curve.ptr, q_)
|
|
q_ = from_POINT(q_)
|
|
assert q_ == (q.x(), q.y())
|
|
|
|
|
|
def test_point_to_jacobian(curve, r):
|
|
p = r.randpoint(curve)
|
|
jp = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p), jp, int2bn(curve.p))
|
|
jx, jy, jz = from_JACOBIAN(jp)
|
|
assert jx % curve.p == (p.x() * jz ** 2) % curve.p
|
|
assert jy % curve.p == (p.y() * jz ** 3) % curve.p
|
|
|
|
q = POINT()
|
|
lib.jacobian_to_curve(jp, q, int2bn(curve.p))
|
|
q = from_POINT(q)
|
|
assert q == (p.x(), p.y())
|
|
|
|
|
|
def test_cond_negate(curve, r):
|
|
x = r.randrange(0, curve.p)
|
|
a = int2bn(x)
|
|
lib.conditional_negate(0, a, int2bn(curve.p))
|
|
assert bn2int(a) == x
|
|
lib.conditional_negate(-1, a, int2bn(curve.p))
|
|
assert bn2int(a) == 2*curve.p - x
|
|
|
|
|
|
def test_jacobian_add(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = r.randpoint(curve)
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp2 = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
|
|
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
|
|
lib.jacobian_to_curve(jp2, q, prime)
|
|
q = from_POINT(q)
|
|
p_ = p1 + p2
|
|
assert (p_.x(), p_.y()) == q
|
|
|
|
def test_jacobian_add_double(curve, r):
|
|
p1 = r.randpoint(curve)
|
|
p2 = p1
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp2 = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
|
|
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
|
|
lib.jacobian_to_curve(jp2, q, prime)
|
|
q = from_POINT(q)
|
|
p_ = p1 + p2
|
|
assert (p_.x(), p_.y()) == q
|
|
|
|
def test_jacobian_double(curve, r):
|
|
p = r.randpoint(curve)
|
|
p2 = p.double()
|
|
prime = int2bn(curve.p)
|
|
q = POINT()
|
|
jp = JACOBIAN()
|
|
lib.curve_to_jacobian(to_POINT(p), jp, prime)
|
|
lib.point_jacobian_double(jp, curve.ptr)
|
|
lib.jacobian_to_curve(jp, q, prime)
|
|
q = from_POINT(q)
|
|
assert (p2.x(), p2.y()) == q
|
|
|
|
def sigdecode(sig, _):
|
|
return map(bytes2num, [sig[:32], sig[32:]])
|
|
|
|
|
|
def test_sign(curve, r):
|
|
priv = r.randbytes(32)
|
|
digest = r.randbytes(32)
|
|
sig = r.randbytes(64)
|
|
|
|
lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0))
|
|
|
|
exp = bytes2num(priv)
|
|
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve,
|
|
hashfunc=hashlib.sha256)
|
|
vk = sk.get_verifying_key()
|
|
|
|
sig_ref = sk.sign_digest_deterministic(digest, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_string_canonize)
|
|
assert binascii.hexlify(sig) == binascii.hexlify(sig_ref)
|
|
|
|
assert vk.verify_digest(sig, digest, sigdecode)
|
|
|
|
def test_validate_pubkey(curve, r):
|
|
p = r.randpoint(curve)
|
|
assert lib.ecdsa_validate_pubkey(curve.ptr, to_POINT(p))
|