mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-11-29 19:08:12 +00:00
1147 lines
33 KiB
C
1147 lines
33 KiB
C
/**
|
|
* Copyright (c) 2013-2014 Tomas Dzetkulic
|
|
* Copyright (c) 2013-2014 Pavol Rusnak
|
|
* Copyright (c) 2015 Jochen Hoenicke
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "address.h"
|
|
#include "base58.h"
|
|
#include "bignum.h"
|
|
#include "ecdsa.h"
|
|
#include "hmac.h"
|
|
#include "memzero.h"
|
|
#include "rand.h"
|
|
#include "rfc6979.h"
|
|
#include "secp256k1.h"
|
|
|
|
// Set cp2 = cp1
|
|
void point_copy(const curve_point *cp1, curve_point *cp2) { *cp2 = *cp1; }
|
|
|
|
// cp2 = cp1 + cp2
|
|
void point_add(const ecdsa_curve *curve, const curve_point *cp1,
|
|
curve_point *cp2) {
|
|
bignum256 lambda, inv, xr, yr;
|
|
|
|
if (point_is_infinity(cp1)) {
|
|
return;
|
|
}
|
|
if (point_is_infinity(cp2)) {
|
|
point_copy(cp1, cp2);
|
|
return;
|
|
}
|
|
if (point_is_equal(cp1, cp2)) {
|
|
point_double(curve, cp2);
|
|
return;
|
|
}
|
|
if (point_is_negative_of(cp1, cp2)) {
|
|
point_set_infinity(cp2);
|
|
return;
|
|
}
|
|
|
|
bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &curve->prime);
|
|
bn_inverse(&inv, &curve->prime);
|
|
bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &curve->prime);
|
|
bn_multiply(&inv, &lambda, &curve->prime);
|
|
|
|
// xr = lambda^2 - x1 - x2
|
|
xr = lambda;
|
|
bn_multiply(&xr, &xr, &curve->prime);
|
|
yr = cp1->x;
|
|
bn_addmod(&yr, &(cp2->x), &curve->prime);
|
|
bn_subtractmod(&xr, &yr, &xr, &curve->prime);
|
|
bn_fast_mod(&xr, &curve->prime);
|
|
bn_mod(&xr, &curve->prime);
|
|
|
|
// yr = lambda (x1 - xr) - y1
|
|
bn_subtractmod(&(cp1->x), &xr, &yr, &curve->prime);
|
|
bn_multiply(&lambda, &yr, &curve->prime);
|
|
bn_subtractmod(&yr, &(cp1->y), &yr, &curve->prime);
|
|
bn_fast_mod(&yr, &curve->prime);
|
|
bn_mod(&yr, &curve->prime);
|
|
|
|
cp2->x = xr;
|
|
cp2->y = yr;
|
|
}
|
|
|
|
// cp = cp + cp
|
|
void point_double(const ecdsa_curve *curve, curve_point *cp) {
|
|
bignum256 lambda, xr, yr;
|
|
|
|
if (point_is_infinity(cp)) {
|
|
return;
|
|
}
|
|
if (bn_is_zero(&(cp->y))) {
|
|
point_set_infinity(cp);
|
|
return;
|
|
}
|
|
|
|
// lambda = (3 x^2 + a) / (2 y)
|
|
lambda = cp->y;
|
|
bn_mult_k(&lambda, 2, &curve->prime);
|
|
bn_inverse(&lambda, &curve->prime);
|
|
|
|
xr = cp->x;
|
|
bn_multiply(&xr, &xr, &curve->prime);
|
|
bn_mult_k(&xr, 3, &curve->prime);
|
|
bn_subi(&xr, -curve->a, &curve->prime);
|
|
bn_multiply(&xr, &lambda, &curve->prime);
|
|
|
|
// xr = lambda^2 - 2*x
|
|
xr = lambda;
|
|
bn_multiply(&xr, &xr, &curve->prime);
|
|
yr = cp->x;
|
|
bn_lshift(&yr);
|
|
bn_subtractmod(&xr, &yr, &xr, &curve->prime);
|
|
bn_fast_mod(&xr, &curve->prime);
|
|
bn_mod(&xr, &curve->prime);
|
|
|
|
// yr = lambda (x - xr) - y
|
|
bn_subtractmod(&(cp->x), &xr, &yr, &curve->prime);
|
|
bn_multiply(&lambda, &yr, &curve->prime);
|
|
bn_subtractmod(&yr, &(cp->y), &yr, &curve->prime);
|
|
bn_fast_mod(&yr, &curve->prime);
|
|
bn_mod(&yr, &curve->prime);
|
|
|
|
cp->x = xr;
|
|
cp->y = yr;
|
|
}
|
|
|
|
// set point to internal representation of point at infinity
|
|
void point_set_infinity(curve_point *p) {
|
|
bn_zero(&(p->x));
|
|
bn_zero(&(p->y));
|
|
}
|
|
|
|
// return true iff p represent point at infinity
|
|
// both coords are zero in internal representation
|
|
int point_is_infinity(const curve_point *p) {
|
|
return bn_is_zero(&(p->x)) && bn_is_zero(&(p->y));
|
|
}
|
|
|
|
// return true iff both points are equal
|
|
int point_is_equal(const curve_point *p, const curve_point *q) {
|
|
return bn_is_equal(&(p->x), &(q->x)) && bn_is_equal(&(p->y), &(q->y));
|
|
}
|
|
|
|
// returns true iff p == -q
|
|
// expects p and q be valid points on curve other than point at infinity
|
|
int point_is_negative_of(const curve_point *p, const curve_point *q) {
|
|
// if P == (x, y), then -P would be (x, -y) on this curve
|
|
if (!bn_is_equal(&(p->x), &(q->x))) {
|
|
return 0;
|
|
}
|
|
|
|
// we shouldn't hit this for a valid point
|
|
if (bn_is_zero(&(p->y))) {
|
|
return 0;
|
|
}
|
|
|
|
return !bn_is_equal(&(p->y), &(q->y));
|
|
}
|
|
|
|
// Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0.
|
|
// The timing of this function does not depend on cond.
|
|
void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime) {
|
|
int j;
|
|
uint32_t tmp = 1;
|
|
assert(a->val[8] < 0x20000);
|
|
for (j = 0; j < 8; j++) {
|
|
tmp += 0x3fffffff + 2 * prime->val[j] - a->val[j];
|
|
a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond);
|
|
tmp >>= 30;
|
|
}
|
|
tmp += 0x3fffffff + 2 * prime->val[j] - a->val[j];
|
|
a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond);
|
|
assert(a->val[8] < 0x20000);
|
|
}
|
|
|
|
typedef struct jacobian_curve_point {
|
|
bignum256 x, y, z;
|
|
} jacobian_curve_point;
|
|
|
|
// generate random K for signing/side-channel noise
|
|
static void generate_k_random(bignum256 *k, const bignum256 *prime) {
|
|
do {
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
k->val[i] = random32() & 0x3FFFFFFF;
|
|
}
|
|
k->val[8] = random32() & 0xFFFF;
|
|
// check that k is in range and not zero.
|
|
} while (bn_is_zero(k) || !bn_is_less(k, prime));
|
|
}
|
|
|
|
void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp,
|
|
const bignum256 *prime) {
|
|
// randomize z coordinate
|
|
generate_k_random(&jp->z, prime);
|
|
|
|
jp->x = jp->z;
|
|
bn_multiply(&jp->z, &jp->x, prime);
|
|
// x = z^2
|
|
jp->y = jp->x;
|
|
bn_multiply(&jp->z, &jp->y, prime);
|
|
// y = z^3
|
|
|
|
bn_multiply(&p->x, &jp->x, prime);
|
|
bn_multiply(&p->y, &jp->y, prime);
|
|
}
|
|
|
|
void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p,
|
|
const bignum256 *prime) {
|
|
p->y = jp->z;
|
|
bn_inverse(&p->y, prime);
|
|
// p->y = z^-1
|
|
p->x = p->y;
|
|
bn_multiply(&p->x, &p->x, prime);
|
|
// p->x = z^-2
|
|
bn_multiply(&p->x, &p->y, prime);
|
|
// p->y = z^-3
|
|
bn_multiply(&jp->x, &p->x, prime);
|
|
// p->x = jp->x * z^-2
|
|
bn_multiply(&jp->y, &p->y, prime);
|
|
// p->y = jp->y * z^-3
|
|
bn_mod(&p->x, prime);
|
|
bn_mod(&p->y, prime);
|
|
}
|
|
|
|
void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2,
|
|
const ecdsa_curve *curve) {
|
|
bignum256 r, h, r2;
|
|
bignum256 hcby, hsqx;
|
|
bignum256 xz, yz, az;
|
|
int is_doubling;
|
|
const bignum256 *prime = &curve->prime;
|
|
int a = curve->a;
|
|
|
|
assert(-3 <= a && a <= 0);
|
|
|
|
/* First we bring p1 to the same denominator:
|
|
* x1' := x1 * z2^2
|
|
* y1' := y1 * z2^3
|
|
*/
|
|
/*
|
|
* lambda = ((y1' - y2)/z2^3) / ((x1' - x2)/z2^2)
|
|
* = (y1' - y2) / (x1' - x2) z2
|
|
* x3/z3^2 = lambda^2 - (x1' + x2)/z2^2
|
|
* y3/z3^3 = 1/2 lambda * (2x3/z3^2 - (x1' + x2)/z2^2) + (y1'+y2)/z2^3
|
|
*
|
|
* For the special case x1=x2, y1=y2 (doubling) we have
|
|
* lambda = 3/2 ((x2/z2^2)^2 + a) / (y2/z2^3)
|
|
* = 3/2 (x2^2 + a*z2^4) / y2*z2)
|
|
*
|
|
* to get rid of fraction we write lambda as
|
|
* lambda = r / (h*z2)
|
|
* with r = is_doubling ? 3/2 x2^2 + az2^4 : (y1 - y2)
|
|
* h = is_doubling ? y1+y2 : (x1 - x2)
|
|
*
|
|
* With z3 = h*z2 (the denominator of lambda)
|
|
* we get x3 = lambda^2*z3^2 - (x1' + x2)/z2^2*z3^2
|
|
* = r^2 - h^2 * (x1' + x2)
|
|
* and y3 = 1/2 r * (2x3 - h^2*(x1' + x2)) + h^3*(y1' + y2)
|
|
*/
|
|
|
|
/* h = x1 - x2
|
|
* r = y1 - y2
|
|
* x3 = r^2 - h^3 - 2*h^2*x2
|
|
* y3 = r*(h^2*x2 - x3) - h^3*y2
|
|
* z3 = h*z2
|
|
*/
|
|
|
|
xz = p2->z;
|
|
bn_multiply(&xz, &xz, prime); // xz = z2^2
|
|
yz = p2->z;
|
|
bn_multiply(&xz, &yz, prime); // yz = z2^3
|
|
|
|
if (a != 0) {
|
|
az = xz;
|
|
bn_multiply(&az, &az, prime); // az = z2^4
|
|
bn_mult_k(&az, -a, prime); // az = -az2^4
|
|
}
|
|
|
|
bn_multiply(&p1->x, &xz, prime); // xz = x1' = x1*z2^2;
|
|
h = xz;
|
|
bn_subtractmod(&h, &p2->x, &h, prime);
|
|
bn_fast_mod(&h, prime);
|
|
// h = x1' - x2;
|
|
|
|
bn_add(&xz, &p2->x);
|
|
// xz = x1' + x2
|
|
|
|
// check for h == 0 % prime. Note that h never normalizes to
|
|
// zero, since h = x1' + 2*prime - x2 > 0 and a positive
|
|
// multiple of prime is always normalized to prime by
|
|
// bn_fast_mod.
|
|
is_doubling = bn_is_equal(&h, prime);
|
|
|
|
bn_multiply(&p1->y, &yz, prime); // yz = y1' = y1*z2^3;
|
|
bn_subtractmod(&yz, &p2->y, &r, prime);
|
|
// r = y1' - y2;
|
|
|
|
bn_add(&yz, &p2->y);
|
|
// yz = y1' + y2
|
|
|
|
r2 = p2->x;
|
|
bn_multiply(&r2, &r2, prime);
|
|
bn_mult_k(&r2, 3, prime);
|
|
|
|
if (a != 0) {
|
|
// subtract -a z2^4, i.e, add a z2^4
|
|
bn_subtractmod(&r2, &az, &r2, prime);
|
|
}
|
|
bn_cmov(&r, is_doubling, &r2, &r);
|
|
bn_cmov(&h, is_doubling, &yz, &h);
|
|
|
|
// hsqx = h^2
|
|
hsqx = h;
|
|
bn_multiply(&hsqx, &hsqx, prime);
|
|
|
|
// hcby = h^3
|
|
hcby = h;
|
|
bn_multiply(&hsqx, &hcby, prime);
|
|
|
|
// hsqx = h^2 * (x1 + x2)
|
|
bn_multiply(&xz, &hsqx, prime);
|
|
|
|
// hcby = h^3 * (y1 + y2)
|
|
bn_multiply(&yz, &hcby, prime);
|
|
|
|
// z3 = h*z2
|
|
bn_multiply(&h, &p2->z, prime);
|
|
|
|
// x3 = r^2 - h^2 (x1 + x2)
|
|
p2->x = r;
|
|
bn_multiply(&p2->x, &p2->x, prime);
|
|
bn_subtractmod(&p2->x, &hsqx, &p2->x, prime);
|
|
bn_fast_mod(&p2->x, prime);
|
|
|
|
// y3 = 1/2 (r*(h^2 (x1 + x2) - 2x3) - h^3 (y1 + y2))
|
|
bn_subtractmod(&hsqx, &p2->x, &p2->y, prime);
|
|
bn_subtractmod(&p2->y, &p2->x, &p2->y, prime);
|
|
bn_multiply(&r, &p2->y, prime);
|
|
bn_subtractmod(&p2->y, &hcby, &p2->y, prime);
|
|
bn_mult_half(&p2->y, prime);
|
|
bn_fast_mod(&p2->y, prime);
|
|
}
|
|
|
|
void point_jacobian_double(jacobian_curve_point *p, const ecdsa_curve *curve) {
|
|
bignum256 az4, m, msq, ysq, xysq;
|
|
const bignum256 *prime = &curve->prime;
|
|
|
|
assert(-3 <= curve->a && curve->a <= 0);
|
|
/* usual algorithm:
|
|
*
|
|
* lambda = (3((x/z^2)^2 + a) / 2y/z^3) = (3x^2 + az^4)/2yz
|
|
* x3/z3^2 = lambda^2 - 2x/z^2
|
|
* y3/z3^3 = lambda * (x/z^2 - x3/z3^2) - y/z^3
|
|
*
|
|
* to get rid of fraction we set
|
|
* m = (3 x^2 + az^4) / 2
|
|
* Hence,
|
|
* lambda = m / yz = m / z3
|
|
*
|
|
* With z3 = yz (the denominator of lambda)
|
|
* we get x3 = lambda^2*z3^2 - 2*x/z^2*z3^2
|
|
* = m^2 - 2*xy^2
|
|
* and y3 = (lambda * (x/z^2 - x3/z3^2) - y/z^3) * z3^3
|
|
* = m * (xy^2 - x3) - y^4
|
|
*/
|
|
|
|
/* m = (3*x^2 + a z^4) / 2
|
|
* x3 = m^2 - 2*xy^2
|
|
* y3 = m*(xy^2 - x3) - 8y^4
|
|
* z3 = y*z
|
|
*/
|
|
|
|
m = p->x;
|
|
bn_multiply(&m, &m, prime);
|
|
bn_mult_k(&m, 3, prime);
|
|
|
|
az4 = p->z;
|
|
bn_multiply(&az4, &az4, prime);
|
|
bn_multiply(&az4, &az4, prime);
|
|
bn_mult_k(&az4, -curve->a, prime);
|
|
bn_subtractmod(&m, &az4, &m, prime);
|
|
bn_mult_half(&m, prime);
|
|
|
|
// msq = m^2
|
|
msq = m;
|
|
bn_multiply(&msq, &msq, prime);
|
|
// ysq = y^2
|
|
ysq = p->y;
|
|
bn_multiply(&ysq, &ysq, prime);
|
|
// xysq = xy^2
|
|
xysq = p->x;
|
|
bn_multiply(&ysq, &xysq, prime);
|
|
|
|
// z3 = yz
|
|
bn_multiply(&p->y, &p->z, prime);
|
|
|
|
// x3 = m^2 - 2*xy^2
|
|
p->x = xysq;
|
|
bn_lshift(&p->x);
|
|
bn_fast_mod(&p->x, prime);
|
|
bn_subtractmod(&msq, &p->x, &p->x, prime);
|
|
bn_fast_mod(&p->x, prime);
|
|
|
|
// y3 = m*(xy^2 - x3) - y^4
|
|
bn_subtractmod(&xysq, &p->x, &p->y, prime);
|
|
bn_multiply(&m, &p->y, prime);
|
|
bn_multiply(&ysq, &ysq, prime);
|
|
bn_subtractmod(&p->y, &ysq, &p->y, prime);
|
|
bn_fast_mod(&p->y, prime);
|
|
}
|
|
|
|
// res = k * p
|
|
void point_multiply(const ecdsa_curve *curve, const bignum256 *k,
|
|
const curve_point *p, curve_point *res) {
|
|
// this algorithm is loosely based on
|
|
// Katsuyuki Okeya and Tsuyoshi Takagi, The Width-w NAF Method Provides
|
|
// Small Memory and Fast Elliptic Scalar Multiplications Secure against
|
|
// Side Channel Attacks.
|
|
assert(bn_is_less(k, &curve->order));
|
|
|
|
int i, j;
|
|
static CONFIDENTIAL bignum256 a;
|
|
uint32_t *aptr;
|
|
uint32_t abits;
|
|
int ashift;
|
|
uint32_t is_even = (k->val[0] & 1) - 1;
|
|
uint32_t bits, sign, nsign;
|
|
static CONFIDENTIAL jacobian_curve_point jres;
|
|
curve_point pmult[8];
|
|
const bignum256 *prime = &curve->prime;
|
|
|
|
// is_even = 0xffffffff if k is even, 0 otherwise.
|
|
|
|
// add 2^256.
|
|
// make number odd: subtract curve->order if even
|
|
uint32_t tmp = 1;
|
|
uint32_t is_non_zero = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
is_non_zero |= k->val[j];
|
|
tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even);
|
|
a.val[j] = tmp & 0x3fffffff;
|
|
tmp >>= 30;
|
|
}
|
|
is_non_zero |= k->val[j];
|
|
a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even);
|
|
assert((a.val[0] & 1) != 0);
|
|
|
|
// special case 0*p: just return zero. We don't care about constant time.
|
|
if (!is_non_zero) {
|
|
point_set_infinity(res);
|
|
return;
|
|
}
|
|
|
|
// Now a = k + 2^256 (mod curve->order) and a is odd.
|
|
//
|
|
// The idea is to bring the new a into the form.
|
|
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
|
|
// a[0] is odd, since a is odd. If a[i] would be even, we can
|
|
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
|
|
// a[64] = 1, which is the 2^256 that we added before.
|
|
//
|
|
// Since k = a - 2^256 (mod curve->order), we can compute
|
|
// k*p = sum_{i=0..63} a[i] 16^i * p
|
|
//
|
|
// We compute |a[i]| * p in advance for all possible
|
|
// values of |a[i]| * p. pmult[i] = (2*i+1) * p
|
|
// We compute p, 3*p, ..., 15*p and store it in the table pmult.
|
|
// store p^2 temporarily in pmult[7]
|
|
pmult[7] = *p;
|
|
point_double(curve, &pmult[7]);
|
|
// compute 3*p, etc by repeatedly adding p^2.
|
|
pmult[0] = *p;
|
|
for (i = 1; i < 8; i++) {
|
|
pmult[i] = pmult[7];
|
|
point_add(curve, &pmult[i - 1], &pmult[i]);
|
|
}
|
|
|
|
// now compute res = sum_{i=0..63} a[i] * 16^i * p step by step,
|
|
// starting with i = 63.
|
|
// initialize jres = |a[63]| * p.
|
|
// Note that a[i] = a>>(4*i) & 0xf if (a&0x10) != 0
|
|
// and - (16 - (a>>(4*i) & 0xf)) otherwise. We can compute this as
|
|
// ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
|
|
// since a is odd.
|
|
aptr = &a.val[8];
|
|
abits = *aptr;
|
|
ashift = 12;
|
|
bits = abits >> ashift;
|
|
sign = (bits >> 4) - 1;
|
|
bits ^= sign;
|
|
bits &= 15;
|
|
curve_to_jacobian(&pmult[bits >> 1], &jres, prime);
|
|
for (i = 62; i >= 0; i--) {
|
|
// sign = sign(a[i+1]) (0xffffffff for negative, 0 for positive)
|
|
// invariant jres = (-1)^sign sum_{j=i+1..63} (a[j] * 16^{j-i-1} * p)
|
|
// abits >> (ashift - 4) = lowbits(a >> (i*4))
|
|
|
|
point_jacobian_double(&jres, curve);
|
|
point_jacobian_double(&jres, curve);
|
|
point_jacobian_double(&jres, curve);
|
|
point_jacobian_double(&jres, curve);
|
|
|
|
// get lowest 5 bits of a >> (i*4).
|
|
ashift -= 4;
|
|
if (ashift < 0) {
|
|
// the condition only depends on the iteration number and
|
|
// leaks no private information to a side-channel.
|
|
bits = abits << (-ashift);
|
|
abits = *(--aptr);
|
|
ashift += 30;
|
|
bits |= abits >> ashift;
|
|
} else {
|
|
bits = abits >> ashift;
|
|
}
|
|
bits &= 31;
|
|
nsign = (bits >> 4) - 1;
|
|
bits ^= nsign;
|
|
bits &= 15;
|
|
|
|
// negate last result to make signs of this round and the
|
|
// last round equal.
|
|
conditional_negate(sign ^ nsign, &jres.z, prime);
|
|
|
|
// add odd factor
|
|
point_jacobian_add(&pmult[bits >> 1], &jres, curve);
|
|
sign = nsign;
|
|
}
|
|
conditional_negate(sign, &jres.z, prime);
|
|
jacobian_to_curve(&jres, res, prime);
|
|
memzero(&a, sizeof(a));
|
|
memzero(&jres, sizeof(jres));
|
|
}
|
|
|
|
#if USE_PRECOMPUTED_CP
|
|
|
|
// res = k * G
|
|
// k must be a normalized number with 0 <= k < curve->order
|
|
void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
|
|
curve_point *res) {
|
|
assert(bn_is_less(k, &curve->order));
|
|
|
|
int i, j;
|
|
static CONFIDENTIAL bignum256 a;
|
|
uint32_t is_even = (k->val[0] & 1) - 1;
|
|
uint32_t lowbits;
|
|
static CONFIDENTIAL jacobian_curve_point jres;
|
|
const bignum256 *prime = &curve->prime;
|
|
|
|
// is_even = 0xffffffff if k is even, 0 otherwise.
|
|
|
|
// add 2^256.
|
|
// make number odd: subtract curve->order if even
|
|
uint32_t tmp = 1;
|
|
uint32_t is_non_zero = 0;
|
|
for (j = 0; j < 8; j++) {
|
|
is_non_zero |= k->val[j];
|
|
tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even);
|
|
a.val[j] = tmp & 0x3fffffff;
|
|
tmp >>= 30;
|
|
}
|
|
is_non_zero |= k->val[j];
|
|
a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even);
|
|
assert((a.val[0] & 1) != 0);
|
|
|
|
// special case 0*G: just return zero. We don't care about constant time.
|
|
if (!is_non_zero) {
|
|
point_set_infinity(res);
|
|
return;
|
|
}
|
|
|
|
// Now a = k + 2^256 (mod curve->order) and a is odd.
|
|
//
|
|
// The idea is to bring the new a into the form.
|
|
// sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd.
|
|
// a[0] is odd, since a is odd. If a[i] would be even, we can
|
|
// add 1 to it and subtract 16 from a[i-1]. Afterwards,
|
|
// a[64] = 1, which is the 2^256 that we added before.
|
|
//
|
|
// Since k = a - 2^256 (mod curve->order), we can compute
|
|
// k*G = sum_{i=0..63} a[i] 16^i * G
|
|
//
|
|
// We have a big table curve->cp that stores all possible
|
|
// values of |a[i]| 16^i * G.
|
|
// curve->cp[i][j] = (2*j+1) * 16^i * G
|
|
|
|
// now compute res = sum_{i=0..63} a[i] * 16^i * G step by step.
|
|
// initial res = |a[0]| * G. Note that a[0] = a & 0xf if (a&0x10) != 0
|
|
// and - (16 - (a & 0xf)) otherwise. We can compute this as
|
|
// ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1
|
|
// since a is odd.
|
|
lowbits = a.val[0] & ((1 << 5) - 1);
|
|
lowbits ^= (lowbits >> 4) - 1;
|
|
lowbits &= 15;
|
|
curve_to_jacobian(&curve->cp[0][lowbits >> 1], &jres, prime);
|
|
for (i = 1; i < 64; i++) {
|
|
// invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G)
|
|
|
|
// shift a by 4 places.
|
|
for (j = 0; j < 8; j++) {
|
|
a.val[j] = (a.val[j] >> 4) | ((a.val[j + 1] & 0xf) << 26);
|
|
}
|
|
a.val[j] >>= 4;
|
|
// a = old(a)>>(4*i)
|
|
// a is even iff sign(a[i-1]) = -1
|
|
|
|
lowbits = a.val[0] & ((1 << 5) - 1);
|
|
lowbits ^= (lowbits >> 4) - 1;
|
|
lowbits &= 15;
|
|
// negate last result to make signs of this round and the
|
|
// last round equal.
|
|
conditional_negate((lowbits & 1) - 1, &jres.y, prime);
|
|
|
|
// add odd factor
|
|
point_jacobian_add(&curve->cp[i][lowbits >> 1], &jres, curve);
|
|
}
|
|
conditional_negate(((a.val[0] >> 4) & 1) - 1, &jres.y, prime);
|
|
jacobian_to_curve(&jres, res, prime);
|
|
memzero(&a, sizeof(a));
|
|
memzero(&jres, sizeof(jres));
|
|
}
|
|
|
|
#else
|
|
|
|
void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k,
|
|
curve_point *res) {
|
|
point_multiply(curve, k, &curve->G, res);
|
|
}
|
|
|
|
#endif
|
|
|
|
int ecdh_multiply(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
const uint8_t *pub_key, uint8_t *session_key) {
|
|
curve_point point;
|
|
if (!ecdsa_read_pubkey(curve, pub_key, &point)) {
|
|
return 1;
|
|
}
|
|
|
|
bignum256 k;
|
|
bn_read_be(priv_key, &k);
|
|
point_multiply(curve, &k, &point, &point);
|
|
memzero(&k, sizeof(k));
|
|
|
|
session_key[0] = 0x04;
|
|
bn_write_be(&point.x, session_key + 1);
|
|
bn_write_be(&point.y, session_key + 33);
|
|
memzero(&point, sizeof(point));
|
|
|
|
return 0;
|
|
}
|
|
|
|
// msg is a data to be signed
|
|
// msg_len is the message length
|
|
int ecdsa_sign(const ecdsa_curve *curve, HasherType hasher_sign,
|
|
const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len,
|
|
uint8_t *sig, uint8_t *pby,
|
|
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
|
|
uint8_t hash[32];
|
|
hasher_Raw(hasher_sign, msg, msg_len, hash);
|
|
int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby, is_canonical);
|
|
memzero(hash, sizeof(hash));
|
|
return res;
|
|
}
|
|
|
|
// uses secp256k1 curve
|
|
// priv_key is a 32 byte big endian stored number
|
|
// sig is 64 bytes long array for the signature
|
|
// digest is 32 bytes of digest
|
|
// is_canonical is an optional function that checks if the signature
|
|
// conforms to additional coin-specific rules.
|
|
int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
const uint8_t *digest, uint8_t *sig, uint8_t *pby,
|
|
int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
|
|
int i;
|
|
curve_point R;
|
|
bignum256 k, z, randk;
|
|
bignum256 *s = &R.y;
|
|
uint8_t by; // signature recovery byte
|
|
|
|
#if USE_RFC6979
|
|
rfc6979_state rng;
|
|
init_rfc6979(priv_key, digest, &rng);
|
|
#endif
|
|
|
|
bn_read_be(digest, &z);
|
|
|
|
for (i = 0; i < 10000; i++) {
|
|
#if USE_RFC6979
|
|
// generate K deterministically
|
|
generate_k_rfc6979(&k, &rng);
|
|
// if k is too big or too small, we don't like it
|
|
if (bn_is_zero(&k) || !bn_is_less(&k, &curve->order)) {
|
|
continue;
|
|
}
|
|
#else
|
|
// generate random number k
|
|
generate_k_random(&k, &curve->order);
|
|
#endif
|
|
|
|
// compute k*G
|
|
scalar_multiply(curve, &k, &R);
|
|
by = R.y.val[0] & 1;
|
|
// r = (rx mod n)
|
|
if (!bn_is_less(&R.x, &curve->order)) {
|
|
bn_subtract(&R.x, &curve->order, &R.x);
|
|
by |= 2;
|
|
}
|
|
// if r is zero, we retry
|
|
if (bn_is_zero(&R.x)) {
|
|
continue;
|
|
}
|
|
|
|
// randomize operations to counter side-channel attacks
|
|
generate_k_random(&randk, &curve->order);
|
|
bn_multiply(&randk, &k, &curve->order); // k*rand
|
|
bn_inverse(&k, &curve->order); // (k*rand)^-1
|
|
bn_read_be(priv_key, s); // priv
|
|
bn_multiply(&R.x, s, &curve->order); // R.x*priv
|
|
bn_add(s, &z); // R.x*priv + z
|
|
bn_multiply(&k, s, &curve->order); // (k*rand)^-1 (R.x*priv + z)
|
|
bn_multiply(&randk, s, &curve->order); // k^-1 (R.x*priv + z)
|
|
bn_mod(s, &curve->order);
|
|
// if s is zero, we retry
|
|
if (bn_is_zero(s)) {
|
|
continue;
|
|
}
|
|
|
|
// if S > order/2 => S = -S
|
|
if (bn_is_less(&curve->order_half, s)) {
|
|
bn_subtract(&curve->order, s, s);
|
|
by ^= 1;
|
|
}
|
|
// we are done, R.x and s is the result signature
|
|
bn_write_be(&R.x, sig);
|
|
bn_write_be(s, sig + 32);
|
|
|
|
// check if the signature is acceptable or retry
|
|
if (is_canonical && !is_canonical(by, sig)) {
|
|
continue;
|
|
}
|
|
|
|
if (pby) {
|
|
*pby = by;
|
|
}
|
|
|
|
memzero(&k, sizeof(k));
|
|
memzero(&randk, sizeof(randk));
|
|
#if USE_RFC6979
|
|
memzero(&rng, sizeof(rng));
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
// Too many retries without a valid signature
|
|
// -> fail with an error
|
|
memzero(&k, sizeof(k));
|
|
memzero(&randk, sizeof(randk));
|
|
#if USE_RFC6979
|
|
memzero(&rng, sizeof(rng));
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
uint8_t *pub_key) {
|
|
curve_point R;
|
|
bignum256 k;
|
|
|
|
bn_read_be(priv_key, &k);
|
|
// compute k*G
|
|
scalar_multiply(curve, &k, &R);
|
|
pub_key[0] = 0x02 | (R.y.val[0] & 0x01);
|
|
bn_write_be(&R.x, pub_key + 1);
|
|
memzero(&R, sizeof(R));
|
|
memzero(&k, sizeof(k));
|
|
}
|
|
|
|
void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
uint8_t *pub_key) {
|
|
curve_point R;
|
|
bignum256 k;
|
|
|
|
bn_read_be(priv_key, &k);
|
|
// compute k*G
|
|
scalar_multiply(curve, &k, &R);
|
|
pub_key[0] = 0x04;
|
|
bn_write_be(&R.x, pub_key + 1);
|
|
bn_write_be(&R.y, pub_key + 33);
|
|
memzero(&R, sizeof(R));
|
|
memzero(&k, sizeof(k));
|
|
}
|
|
|
|
int ecdsa_uncompress_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
|
|
uint8_t *uncompressed) {
|
|
curve_point pub;
|
|
|
|
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
|
|
return 0;
|
|
}
|
|
|
|
uncompressed[0] = 4;
|
|
bn_write_be(&pub.x, uncompressed + 1);
|
|
bn_write_be(&pub.y, uncompressed + 33);
|
|
|
|
return 1;
|
|
}
|
|
|
|
void ecdsa_get_pubkeyhash(const uint8_t *pub_key, HasherType hasher_pubkey,
|
|
uint8_t *pubkeyhash) {
|
|
uint8_t h[HASHER_DIGEST_LENGTH];
|
|
if (pub_key[0] == 0x04) { // uncompressed format
|
|
hasher_Raw(hasher_pubkey, pub_key, 65, h);
|
|
} else if (pub_key[0] == 0x00) { // point at infinity
|
|
hasher_Raw(hasher_pubkey, pub_key, 1, h);
|
|
} else { // expecting compressed format
|
|
hasher_Raw(hasher_pubkey, pub_key, 33, h);
|
|
}
|
|
memcpy(pubkeyhash, h, 20);
|
|
memzero(h, sizeof(h));
|
|
}
|
|
|
|
void ecdsa_get_address_raw(const uint8_t *pub_key, uint32_t version,
|
|
HasherType hasher_pubkey, uint8_t *addr_raw) {
|
|
size_t prefix_len = address_prefix_bytes_len(version);
|
|
address_write_prefix_bytes(version, addr_raw);
|
|
ecdsa_get_pubkeyhash(pub_key, hasher_pubkey, addr_raw + prefix_len);
|
|
}
|
|
|
|
void ecdsa_get_address(const uint8_t *pub_key, uint32_t version,
|
|
HasherType hasher_pubkey, HasherType hasher_base58,
|
|
char *addr, int addrsize) {
|
|
uint8_t raw[MAX_ADDR_RAW_SIZE];
|
|
size_t prefix_len = address_prefix_bytes_len(version);
|
|
ecdsa_get_address_raw(pub_key, version, hasher_pubkey, raw);
|
|
base58_encode_check(raw, 20 + prefix_len, hasher_base58, addr, addrsize);
|
|
// not as important to clear this one, but we might as well
|
|
memzero(raw, sizeof(raw));
|
|
}
|
|
|
|
void ecdsa_get_address_segwit_p2sh_raw(const uint8_t *pub_key, uint32_t version,
|
|
HasherType hasher_pubkey,
|
|
uint8_t *addr_raw) {
|
|
uint8_t buf[32 + 2];
|
|
buf[0] = 0; // version byte
|
|
buf[1] = 20; // push 20 bytes
|
|
ecdsa_get_pubkeyhash(pub_key, hasher_pubkey, buf + 2);
|
|
size_t prefix_len = address_prefix_bytes_len(version);
|
|
address_write_prefix_bytes(version, addr_raw);
|
|
hasher_Raw(hasher_pubkey, buf, 22, addr_raw + prefix_len);
|
|
}
|
|
|
|
void ecdsa_get_address_segwit_p2sh(const uint8_t *pub_key, uint32_t version,
|
|
HasherType hasher_pubkey,
|
|
HasherType hasher_base58, char *addr,
|
|
int addrsize) {
|
|
uint8_t raw[MAX_ADDR_RAW_SIZE];
|
|
size_t prefix_len = address_prefix_bytes_len(version);
|
|
ecdsa_get_address_segwit_p2sh_raw(pub_key, version, hasher_pubkey, raw);
|
|
base58_encode_check(raw, prefix_len + 20, hasher_base58, addr, addrsize);
|
|
memzero(raw, sizeof(raw));
|
|
}
|
|
|
|
void ecdsa_get_wif(const uint8_t *priv_key, uint32_t version,
|
|
HasherType hasher_base58, char *wif, int wifsize) {
|
|
uint8_t wif_raw[MAX_WIF_RAW_SIZE];
|
|
size_t prefix_len = address_prefix_bytes_len(version);
|
|
address_write_prefix_bytes(version, wif_raw);
|
|
memcpy(wif_raw + prefix_len, priv_key, 32);
|
|
wif_raw[prefix_len + 32] = 0x01;
|
|
base58_encode_check(wif_raw, prefix_len + 32 + 1, hasher_base58, wif,
|
|
wifsize);
|
|
// private keys running around our stack can cause trouble
|
|
memzero(wif_raw, sizeof(wif_raw));
|
|
}
|
|
|
|
int ecdsa_address_decode(const char *addr, uint32_t version,
|
|
HasherType hasher_base58, uint8_t *out) {
|
|
if (!addr) return 0;
|
|
int prefix_len = address_prefix_bytes_len(version);
|
|
return base58_decode_check(addr, hasher_base58, out, 20 + prefix_len) ==
|
|
20 + prefix_len &&
|
|
address_check_prefix(out, version);
|
|
}
|
|
|
|
void compress_coords(const curve_point *cp, uint8_t *compressed) {
|
|
compressed[0] = bn_is_odd(&cp->y) ? 0x03 : 0x02;
|
|
bn_write_be(&cp->x, compressed + 1);
|
|
}
|
|
|
|
void uncompress_coords(const ecdsa_curve *curve, uint8_t odd,
|
|
const bignum256 *x, bignum256 *y) {
|
|
// y^2 = x^3 + a*x + b
|
|
memcpy(y, x, sizeof(bignum256)); // y is x
|
|
bn_multiply(x, y, &curve->prime); // y is x^2
|
|
bn_subi(y, -curve->a, &curve->prime); // y is x^2 + a
|
|
bn_multiply(x, y, &curve->prime); // y is x^3 + ax
|
|
bn_add(y, &curve->b); // y is x^3 + ax + b
|
|
bn_sqrt(y, &curve->prime); // y = sqrt(y)
|
|
if ((odd & 0x01) != (y->val[0] & 1)) {
|
|
bn_subtract(&curve->prime, y, y); // y = -y
|
|
}
|
|
}
|
|
|
|
int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key,
|
|
curve_point *pub) {
|
|
if (!curve) {
|
|
curve = &secp256k1;
|
|
}
|
|
if (pub_key[0] == 0x04) {
|
|
bn_read_be(pub_key + 1, &(pub->x));
|
|
bn_read_be(pub_key + 33, &(pub->y));
|
|
return ecdsa_validate_pubkey(curve, pub);
|
|
}
|
|
if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords
|
|
bn_read_be(pub_key + 1, &(pub->x));
|
|
uncompress_coords(curve, pub_key[0], &(pub->x), &(pub->y));
|
|
return ecdsa_validate_pubkey(curve, pub);
|
|
}
|
|
// error
|
|
return 0;
|
|
}
|
|
|
|
// Verifies that:
|
|
// - pub is not the point at infinity.
|
|
// - pub->x and pub->y are in range [0,p-1].
|
|
// - pub is on the curve.
|
|
|
|
int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) {
|
|
bignum256 y_2, x3_ax_b;
|
|
|
|
if (point_is_infinity(pub)) {
|
|
return 0;
|
|
}
|
|
|
|
if (!bn_is_less(&(pub->x), &curve->prime) ||
|
|
!bn_is_less(&(pub->y), &curve->prime)) {
|
|
return 0;
|
|
}
|
|
|
|
memcpy(&y_2, &(pub->y), sizeof(bignum256));
|
|
memcpy(&x3_ax_b, &(pub->x), sizeof(bignum256));
|
|
|
|
// y^2
|
|
bn_multiply(&(pub->y), &y_2, &curve->prime);
|
|
bn_mod(&y_2, &curve->prime);
|
|
|
|
// x^3 + ax + b
|
|
bn_multiply(&(pub->x), &x3_ax_b, &curve->prime); // x^2
|
|
bn_subi(&x3_ax_b, -curve->a, &curve->prime); // x^2 + a
|
|
bn_multiply(&(pub->x), &x3_ax_b, &curve->prime); // x^3 + ax
|
|
bn_addmod(&x3_ax_b, &curve->b, &curve->prime); // x^3 + ax + b
|
|
bn_mod(&x3_ax_b, &curve->prime);
|
|
|
|
if (!bn_is_equal(&x3_ax_b, &y_2)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// uses secp256k1 curve
|
|
// pub_key - 65 bytes uncompressed key
|
|
// signature - 64 bytes signature
|
|
// msg is a data that was signed
|
|
// msg_len is the message length
|
|
|
|
int ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_sign,
|
|
const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg,
|
|
uint32_t msg_len) {
|
|
uint8_t hash[32];
|
|
hasher_Raw(hasher_sign, msg, msg_len, hash);
|
|
int res = ecdsa_verify_digest(curve, pub_key, sig, hash);
|
|
memzero(hash, sizeof(hash));
|
|
return res;
|
|
}
|
|
|
|
// Compute public key from signature and recovery id.
|
|
// returns 0 if the key is successfully recovered
|
|
int ecdsa_recover_pub_from_sig(const ecdsa_curve *curve, uint8_t *pub_key,
|
|
const uint8_t *sig, const uint8_t *digest,
|
|
int recid) {
|
|
bignum256 r, s, e;
|
|
curve_point cp, cp2;
|
|
|
|
// read r and s
|
|
bn_read_be(sig, &r);
|
|
bn_read_be(sig + 32, &s);
|
|
if (!bn_is_less(&r, &curve->order) || bn_is_zero(&r)) {
|
|
return 1;
|
|
}
|
|
if (!bn_is_less(&s, &curve->order) || bn_is_zero(&s)) {
|
|
return 1;
|
|
}
|
|
// cp = R = k * G (k is secret nonce when signing)
|
|
memcpy(&cp.x, &r, sizeof(bignum256));
|
|
if (recid & 2) {
|
|
bn_add(&cp.x, &curve->order);
|
|
if (!bn_is_less(&cp.x, &curve->prime)) {
|
|
return 1;
|
|
}
|
|
}
|
|
// compute y from x
|
|
uncompress_coords(curve, recid & 1, &cp.x, &cp.y);
|
|
if (!ecdsa_validate_pubkey(curve, &cp)) {
|
|
return 1;
|
|
}
|
|
// e = -digest
|
|
bn_read_be(digest, &e);
|
|
bn_subtractmod(&curve->order, &e, &e, &curve->order);
|
|
bn_fast_mod(&e, &curve->order);
|
|
bn_mod(&e, &curve->order);
|
|
// r := r^-1
|
|
bn_inverse(&r, &curve->order);
|
|
// cp := s * R = s * k *G
|
|
point_multiply(curve, &s, &cp, &cp);
|
|
// cp2 := -digest * G
|
|
scalar_multiply(curve, &e, &cp2);
|
|
// cp := (s * k - digest) * G = (r*priv) * G = r * Pub
|
|
point_add(curve, &cp2, &cp);
|
|
// cp := r^{-1} * r * Pub = Pub
|
|
point_multiply(curve, &r, &cp, &cp);
|
|
pub_key[0] = 0x04;
|
|
bn_write_be(&cp.x, pub_key + 1);
|
|
bn_write_be(&cp.y, pub_key + 33);
|
|
return 0;
|
|
}
|
|
|
|
// returns 0 if verification succeeded
|
|
int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
|
|
const uint8_t *sig, const uint8_t *digest) {
|
|
curve_point pub, res;
|
|
bignum256 r, s, z;
|
|
|
|
if (!ecdsa_read_pubkey(curve, pub_key, &pub)) {
|
|
return 1;
|
|
}
|
|
|
|
bn_read_be(sig, &r);
|
|
bn_read_be(sig + 32, &s);
|
|
|
|
bn_read_be(digest, &z);
|
|
|
|
if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &curve->order)) ||
|
|
(!bn_is_less(&s, &curve->order)))
|
|
return 2;
|
|
|
|
bn_inverse(&s, &curve->order); // s^-1
|
|
bn_multiply(&s, &z, &curve->order); // z*s^-1
|
|
bn_mod(&z, &curve->order);
|
|
bn_multiply(&r, &s, &curve->order); // r*s^-1
|
|
bn_mod(&s, &curve->order);
|
|
|
|
int result = 0;
|
|
if (bn_is_zero(&z)) {
|
|
// our message hashes to zero
|
|
// I don't expect this to happen any time soon
|
|
result = 3;
|
|
} else {
|
|
scalar_multiply(curve, &z, &res);
|
|
}
|
|
|
|
if (result == 0) {
|
|
// both pub and res can be infinity, can have y = 0 OR can be equal -> false
|
|
// negative
|
|
point_multiply(curve, &s, &pub, &pub);
|
|
point_add(curve, &pub, &res);
|
|
bn_mod(&(res.x), &curve->order);
|
|
// signature does not match
|
|
if (!bn_is_equal(&res.x, &r)) {
|
|
result = 5;
|
|
}
|
|
}
|
|
|
|
memzero(&pub, sizeof(pub));
|
|
memzero(&res, sizeof(res));
|
|
memzero(&r, sizeof(r));
|
|
memzero(&s, sizeof(s));
|
|
memzero(&z, sizeof(z));
|
|
|
|
// all OK
|
|
return result;
|
|
}
|
|
|
|
int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der) {
|
|
int i;
|
|
uint8_t *p = der, *len, *len1, *len2;
|
|
*p = 0x30;
|
|
p++; // sequence
|
|
*p = 0x00;
|
|
len = p;
|
|
p++; // len(sequence)
|
|
|
|
*p = 0x02;
|
|
p++; // integer
|
|
*p = 0x00;
|
|
len1 = p;
|
|
p++; // len(integer)
|
|
|
|
// process R
|
|
i = 0;
|
|
while (sig[i] == 0 && i < 32) {
|
|
i++;
|
|
} // skip leading zeroes
|
|
if (sig[i] >= 0x80) { // put zero in output if MSB set
|
|
*p = 0x00;
|
|
p++;
|
|
*len1 = *len1 + 1;
|
|
}
|
|
while (i < 32) { // copy bytes to output
|
|
*p = sig[i];
|
|
p++;
|
|
*len1 = *len1 + 1;
|
|
i++;
|
|
}
|
|
|
|
*p = 0x02;
|
|
p++; // integer
|
|
*p = 0x00;
|
|
len2 = p;
|
|
p++; // len(integer)
|
|
|
|
// process S
|
|
i = 32;
|
|
while (sig[i] == 0 && i < 64) {
|
|
i++;
|
|
} // skip leading zeroes
|
|
if (sig[i] >= 0x80) { // put zero in output if MSB set
|
|
*p = 0x00;
|
|
p++;
|
|
*len2 = *len2 + 1;
|
|
}
|
|
while (i < 64) { // copy bytes to output
|
|
*p = sig[i];
|
|
p++;
|
|
*len2 = *len2 + 1;
|
|
i++;
|
|
}
|
|
|
|
*len = *len1 + *len2 + 4;
|
|
return *len + 2;
|
|
}
|