mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-18 11:21:11 +00:00
331 lines
10 KiB
C
331 lines
10 KiB
C
/**
|
|
* Copyright (c) 2023 Andrew Kozlik
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* For a specification of AES-CCM see one of the following:
|
|
* https://datatracker.ietf.org/doc/html/rfc3610
|
|
* https://doi.org/10.6028/NIST.SP.800-38C
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "aesccm.h"
|
|
#include "memzero.h"
|
|
|
|
typedef struct {
|
|
const aes_encrypt_ctx *encrypt_ctx;
|
|
union {
|
|
// Ensure 32-bit alignment.
|
|
uint8_t state[AES_BLOCK_SIZE];
|
|
uint32_t state32[AES_BLOCK_SIZE / 4];
|
|
};
|
|
// Next position in the state where data will be added.
|
|
// Valid values are 0 to 15.
|
|
uint8_t pos;
|
|
} cbc_mac_context;
|
|
|
|
// WARNING: Caller must ensure that encrypt_ctx remains valid for the lifetime
|
|
// of ctx.
|
|
static void cbc_mac_init(cbc_mac_context *ctx,
|
|
const aes_encrypt_ctx *encrypt_ctx) {
|
|
memzero(ctx, sizeof(cbc_mac_context));
|
|
ctx->encrypt_ctx = encrypt_ctx;
|
|
}
|
|
|
|
static AES_RETURN cbc_mac_update(cbc_mac_context *ctx, const uint8_t *data,
|
|
size_t size) {
|
|
if (ctx->pos != 0) {
|
|
while (size > 0 && ctx->pos < AES_BLOCK_SIZE) {
|
|
ctx->state[ctx->pos] ^= *data;
|
|
ctx->pos++;
|
|
data++;
|
|
size--;
|
|
}
|
|
|
|
if (ctx->pos != AES_BLOCK_SIZE) {
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
if (aes_encrypt(ctx->state, ctx->state, ctx->encrypt_ctx) != EXIT_SUCCESS) {
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
ctx->pos = 0;
|
|
}
|
|
|
|
size_t block_count = size >> AES_BLOCK_SIZE_P2;
|
|
size %= AES_BLOCK_SIZE;
|
|
|
|
if (!ALIGN_OFFSET(data, 4)) {
|
|
while (block_count != 0) {
|
|
ctx->state32[0] ^= ((uint32_t *)data)[0];
|
|
ctx->state32[1] ^= ((uint32_t *)data)[1];
|
|
ctx->state32[2] ^= ((uint32_t *)data)[2];
|
|
ctx->state32[3] ^= ((uint32_t *)data)[3];
|
|
if (aes_encrypt(ctx->state, ctx->state, ctx->encrypt_ctx) !=
|
|
EXIT_SUCCESS) {
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
data += AES_BLOCK_SIZE;
|
|
block_count--;
|
|
}
|
|
} else {
|
|
while (block_count != 0) {
|
|
ctx->state[0] ^= data[0];
|
|
ctx->state[1] ^= data[1];
|
|
ctx->state[2] ^= data[2];
|
|
ctx->state[3] ^= data[3];
|
|
ctx->state[4] ^= data[4];
|
|
ctx->state[5] ^= data[5];
|
|
ctx->state[6] ^= data[6];
|
|
ctx->state[7] ^= data[7];
|
|
ctx->state[8] ^= data[8];
|
|
ctx->state[9] ^= data[9];
|
|
ctx->state[10] ^= data[10];
|
|
ctx->state[11] ^= data[11];
|
|
ctx->state[12] ^= data[12];
|
|
ctx->state[13] ^= data[13];
|
|
ctx->state[14] ^= data[14];
|
|
ctx->state[15] ^= data[15];
|
|
if (aes_encrypt(ctx->state, ctx->state, ctx->encrypt_ctx) !=
|
|
EXIT_SUCCESS) {
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
data += AES_BLOCK_SIZE;
|
|
block_count--;
|
|
}
|
|
}
|
|
|
|
while (size > 0) {
|
|
ctx->state[ctx->pos] ^= *data;
|
|
ctx->pos++;
|
|
data++;
|
|
size--;
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static AES_RETURN cbc_mac_update_zero_padding(cbc_mac_context *ctx) {
|
|
if (ctx->pos != 0) {
|
|
if (aes_encrypt(ctx->state, ctx->state, ctx->encrypt_ctx) != EXIT_SUCCESS) {
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
ctx->pos = 0;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static AES_RETURN cbc_mac_final(cbc_mac_context *ctx, uint8_t *mac,
|
|
size_t mac_len) {
|
|
if (ctx->pos != 0 || mac_len > AES_BLOCK_SIZE) {
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
memcpy(mac, ctx->state, mac_len);
|
|
memzero(ctx, sizeof(*ctx));
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
static AES_RETURN aes_ccm_init(aes_encrypt_ctx *encrypt_ctx,
|
|
const uint8_t *nonce, size_t nonce_len,
|
|
const uint8_t *adata, size_t adata_len,
|
|
size_t plaintext_len, size_t mac_len,
|
|
cbc_mac_context *cbc_ctx, uint8_t *ctr_block) {
|
|
if (mac_len < 4 || mac_len > AES_BLOCK_SIZE || mac_len % 2 != 0) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (nonce_len < 7 || nonce_len > 13) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// Length of the binary representation of plaintext_len.
|
|
const size_t q = 15 - nonce_len;
|
|
|
|
uint8_t flags = (adata_len != 0) << 6;
|
|
flags |= ((mac_len - 2) / 2) << 3;
|
|
flags |= q - 1;
|
|
|
|
// Encode the first block.
|
|
uint8_t block[AES_BLOCK_SIZE] = {0};
|
|
block[0] = flags;
|
|
memcpy(&block[1], nonce, nonce_len);
|
|
size_t shifted_len = plaintext_len;
|
|
for (size_t i = 0; i < q; ++i) {
|
|
block[15 - i] = shifted_len & 0xff;
|
|
shifted_len >>= 8;
|
|
}
|
|
if (shifted_len != 0) {
|
|
// plaintext_len does not fit into q octets.
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
aes_mode_reset(encrypt_ctx);
|
|
cbc_mac_init(cbc_ctx, encrypt_ctx);
|
|
if (cbc_mac_update(cbc_ctx, block, sizeof(block)) != EXIT_SUCCESS) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// Format the associated data length.
|
|
if (adata_len != 0) {
|
|
size_t block_size = 0;
|
|
if (adata_len < 65536 - 256) {
|
|
block[0] = adata_len >> 8;
|
|
block[1] = adata_len & 0xff;
|
|
block_size = 2;
|
|
} else {
|
|
shifted_len = adata_len;
|
|
block[5] = shifted_len & 0xff;
|
|
shifted_len >>= 8;
|
|
block[4] = shifted_len & 0xff;
|
|
shifted_len >>= 8;
|
|
block[3] = shifted_len & 0xff;
|
|
shifted_len >>= 8;
|
|
block[2] = shifted_len & 0xff;
|
|
block[1] = 0xfe;
|
|
block[0] = 0xff;
|
|
block_size = 6;
|
|
if ((shifted_len >> 8) != 0) {
|
|
// Associated data over 4 GB not supported.
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (cbc_mac_update(cbc_ctx, block, block_size) != EXIT_SUCCESS ||
|
|
cbc_mac_update(cbc_ctx, adata, adata_len) != EXIT_SUCCESS ||
|
|
cbc_mac_update_zero_padding(cbc_ctx) != EXIT_SUCCESS) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
// Initialize counter.
|
|
memzero(ctr_block, AES_BLOCK_SIZE);
|
|
ctr_block[0] = q - 1;
|
|
memcpy(&ctr_block[1], nonce, nonce_len);
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
// The length of data written to the ciphertext array is plaintext_len +
|
|
// mac_len.
|
|
AES_RETURN aes_ccm_encrypt(aes_encrypt_ctx *encrypt_ctx, const uint8_t *nonce,
|
|
size_t nonce_len, const uint8_t *adata,
|
|
size_t adata_len, const uint8_t *plaintext,
|
|
size_t plaintext_len, size_t mac_len,
|
|
uint8_t *ciphertext) {
|
|
cbc_mac_context cbc_ctx = {0};
|
|
uint8_t ctr_block[AES_BLOCK_SIZE] = {0};
|
|
if (aes_ccm_init(encrypt_ctx, nonce, nonce_len, adata, adata_len,
|
|
plaintext_len, mac_len, &cbc_ctx,
|
|
ctr_block) != EXIT_SUCCESS) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
if (cbc_mac_update(&cbc_ctx, plaintext, plaintext_len) != EXIT_SUCCESS ||
|
|
cbc_mac_update_zero_padding(&cbc_ctx) != EXIT_SUCCESS ||
|
|
cbc_mac_final(&cbc_ctx, &ciphertext[plaintext_len], mac_len) !=
|
|
EXIT_SUCCESS) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
uint8_t s0[AES_BLOCK_SIZE] = {0};
|
|
if (aes_ecb_encrypt(ctr_block, s0, AES_BLOCK_SIZE, encrypt_ctx) !=
|
|
EXIT_SUCCESS) {
|
|
memzero(s0, sizeof(s0));
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
for (size_t i = 0; i < mac_len; ++i) {
|
|
ciphertext[plaintext_len + i] ^= s0[i];
|
|
}
|
|
memzero(s0, sizeof(s0));
|
|
|
|
ctr_block[AES_BLOCK_SIZE - 1] = 1;
|
|
if (aes_ctr_crypt(plaintext, ciphertext, plaintext_len, ctr_block,
|
|
aes_ctr_cbuf_inc, encrypt_ctx) != EXIT_SUCCESS) {
|
|
memzero(ciphertext, plaintext_len + mac_len);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
// The length of data written to the plaintext array is ciphertext_len -
|
|
// mac_len.
|
|
AES_RETURN aes_ccm_decrypt(aes_encrypt_ctx *encrypt_ctx, const uint8_t *nonce,
|
|
size_t nonce_len, const uint8_t *adata,
|
|
size_t adata_len, const uint8_t *ciphertext,
|
|
size_t ciphertext_len, size_t mac_len,
|
|
uint8_t *plaintext) {
|
|
cbc_mac_context cbc_ctx = {0};
|
|
uint8_t ctr_block[AES_BLOCK_SIZE] = {0};
|
|
size_t plaintext_len = ciphertext_len - mac_len;
|
|
if (ciphertext_len < mac_len ||
|
|
aes_ccm_init(encrypt_ctx, nonce, nonce_len, adata, adata_len,
|
|
plaintext_len, mac_len, &cbc_ctx,
|
|
ctr_block) != EXIT_SUCCESS) {
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
uint8_t s0[AES_BLOCK_SIZE] = {0};
|
|
if (aes_ecb_encrypt(ctr_block, s0, AES_BLOCK_SIZE, encrypt_ctx) !=
|
|
EXIT_SUCCESS) {
|
|
memzero(&cbc_ctx, sizeof(cbc_ctx));
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
ctr_block[AES_BLOCK_SIZE - 1] = 1;
|
|
if (aes_ctr_crypt(ciphertext, plaintext, plaintext_len, ctr_block,
|
|
aes_ctr_cbuf_inc, encrypt_ctx) != EXIT_SUCCESS) {
|
|
memzero(&cbc_ctx, sizeof(cbc_ctx));
|
|
memzero(s0, sizeof(s0));
|
|
memzero(plaintext, plaintext_len);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
uint8_t cbc_mac[AES_BLOCK_SIZE] = {0};
|
|
if (cbc_mac_update(&cbc_ctx, plaintext, plaintext_len) != EXIT_SUCCESS ||
|
|
cbc_mac_update_zero_padding(&cbc_ctx) != EXIT_SUCCESS ||
|
|
cbc_mac_final(&cbc_ctx, cbc_mac, mac_len) != EXIT_SUCCESS) {
|
|
memzero(s0, sizeof(s0));
|
|
memzero(plaintext, plaintext_len);
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
uint8_t diff = 0;
|
|
for (size_t i = 0; i < mac_len; ++i) {
|
|
diff |= ciphertext[plaintext_len + i] ^ s0[i] ^ cbc_mac[i];
|
|
}
|
|
memzero(cbc_mac, sizeof(cbc_mac));
|
|
memzero(s0, sizeof(s0));
|
|
|
|
if (diff != 0) {
|
|
memzero(plaintext, plaintext_len);
|
|
return EXIT_FAILURE;
|
|
}
|
|
return EXIT_SUCCESS;
|
|
}
|