mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-15 18:00:59 +00:00
561 lines
16 KiB
C
561 lines
16 KiB
C
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
The redistribution and use of this software (with or without changes)
|
|
is allowed without the payment of fees or royalties provided that:
|
|
|
|
source code distributions include the above copyright notice, this
|
|
list of conditions and the following disclaimer;
|
|
|
|
binary distributions include the above copyright notice, this list
|
|
of conditions and the following disclaimer in their documentation.
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its operation, including, but not limited to, correctness
|
|
and fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 20/12/2007
|
|
*/
|
|
|
|
#include "aesopt.h"
|
|
#include "aestab.h"
|
|
|
|
#if defined( USE_INTEL_AES_IF_PRESENT )
|
|
# include "aes_ni.h"
|
|
#else
|
|
/* map names here to provide the external API ('name' -> 'aes_name') */
|
|
# define aes_xi(x) aes_ ## x
|
|
#endif
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
# include "aes_via_ace.h"
|
|
#endif
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
/* Initialise the key schedule from the user supplied key. The key
|
|
length can be specified in bytes, with legal values of 16, 24
|
|
and 32, or in bits, with legal values of 128, 192 and 256. These
|
|
values correspond with Nk values of 4, 6 and 8 respectively.
|
|
|
|
The following macros implement a single cycle in the key
|
|
schedule generation process. The number of cycles needed
|
|
for each cx->n_col and nk value is:
|
|
|
|
nk = 4 5 6 7 8
|
|
------------------------------
|
|
cx->n_col = 4 10 9 8 7 7
|
|
cx->n_col = 5 14 11 10 9 9
|
|
cx->n_col = 6 19 15 12 11 11
|
|
cx->n_col = 7 21 19 16 13 14
|
|
cx->n_col = 8 29 23 19 17 14
|
|
*/
|
|
|
|
#if defined( REDUCE_CODE_SIZE )
|
|
# define ls_box ls_sub
|
|
uint32_t ls_sub(const uint32_t t, const uint32_t n);
|
|
# define inv_mcol im_sub
|
|
uint32_t im_sub(const uint32_t x);
|
|
# ifdef ENC_KS_UNROLL
|
|
# undef ENC_KS_UNROLL
|
|
# endif
|
|
# ifdef DEC_KS_UNROLL
|
|
# undef DEC_KS_UNROLL
|
|
# endif
|
|
#endif
|
|
|
|
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
|
|
|
|
#if defined(AES_128) || defined( AES_VAR )
|
|
|
|
#define ke4(k,i) \
|
|
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
|
k[4*(i)+5] = ss[1] ^= ss[0]; \
|
|
k[4*(i)+6] = ss[2] ^= ss[1]; \
|
|
k[4*(i)+7] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
AES_RETURN aes_xi(encrypt_key128)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
|
{ uint32_t ss[4] = {0};
|
|
|
|
cx->ks[0] = ss[0] = word_in(key, 0);
|
|
cx->ks[1] = ss[1] = word_in(key, 1);
|
|
cx->ks[2] = ss[2] = word_in(key, 2);
|
|
cx->ks[3] = ss[3] = word_in(key, 3);
|
|
|
|
#ifdef ENC_KS_UNROLL
|
|
ke4(cx->ks, 0); ke4(cx->ks, 1);
|
|
ke4(cx->ks, 2); ke4(cx->ks, 3);
|
|
ke4(cx->ks, 4); ke4(cx->ks, 5);
|
|
ke4(cx->ks, 6); ke4(cx->ks, 7);
|
|
ke4(cx->ks, 8);
|
|
#else
|
|
{ uint32_t i = 0;
|
|
for(i = 0; i < 9; ++i)
|
|
ke4(cx->ks, i);
|
|
}
|
|
#endif
|
|
ke4(cx->ks, 9);
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 10 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_192) || defined( AES_VAR )
|
|
|
|
#define kef6(k,i) \
|
|
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
|
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
|
|
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
|
|
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke6(k,i) \
|
|
{ kef6(k,i); \
|
|
k[6*(i)+10] = ss[4] ^= ss[3]; \
|
|
k[6*(i)+11] = ss[5] ^= ss[4]; \
|
|
}
|
|
|
|
AES_RETURN aes_xi(encrypt_key192)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
|
{ uint32_t ss[6] = {0};
|
|
|
|
cx->ks[0] = ss[0] = word_in(key, 0);
|
|
cx->ks[1] = ss[1] = word_in(key, 1);
|
|
cx->ks[2] = ss[2] = word_in(key, 2);
|
|
cx->ks[3] = ss[3] = word_in(key, 3);
|
|
cx->ks[4] = ss[4] = word_in(key, 4);
|
|
cx->ks[5] = ss[5] = word_in(key, 5);
|
|
|
|
#ifdef ENC_KS_UNROLL
|
|
ke6(cx->ks, 0); ke6(cx->ks, 1);
|
|
ke6(cx->ks, 2); ke6(cx->ks, 3);
|
|
ke6(cx->ks, 4); ke6(cx->ks, 5);
|
|
ke6(cx->ks, 6);
|
|
#else
|
|
{ uint32_t i = 0;
|
|
for(i = 0; i < 7; ++i)
|
|
ke6(cx->ks, i);
|
|
}
|
|
#endif
|
|
kef6(cx->ks, 7);
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 12 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_256) || defined( AES_VAR )
|
|
|
|
#define kef8(k,i) \
|
|
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
|
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
|
|
k[8*(i)+10] = ss[2] ^= ss[1]; \
|
|
k[8*(i)+11] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define ke8(k,i) \
|
|
{ kef8(k,i); \
|
|
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
|
|
k[8*(i)+13] = ss[5] ^= ss[4]; \
|
|
k[8*(i)+14] = ss[6] ^= ss[5]; \
|
|
k[8*(i)+15] = ss[7] ^= ss[6]; \
|
|
}
|
|
|
|
AES_RETURN aes_xi(encrypt_key256)(const unsigned char *key, aes_encrypt_ctx cx[1])
|
|
{ uint32_t ss[8] = {0};
|
|
|
|
cx->ks[0] = ss[0] = word_in(key, 0);
|
|
cx->ks[1] = ss[1] = word_in(key, 1);
|
|
cx->ks[2] = ss[2] = word_in(key, 2);
|
|
cx->ks[3] = ss[3] = word_in(key, 3);
|
|
cx->ks[4] = ss[4] = word_in(key, 4);
|
|
cx->ks[5] = ss[5] = word_in(key, 5);
|
|
cx->ks[6] = ss[6] = word_in(key, 6);
|
|
cx->ks[7] = ss[7] = word_in(key, 7);
|
|
|
|
#ifdef ENC_KS_UNROLL
|
|
ke8(cx->ks, 0); ke8(cx->ks, 1);
|
|
ke8(cx->ks, 2); ke8(cx->ks, 3);
|
|
ke8(cx->ks, 4); ke8(cx->ks, 5);
|
|
#else
|
|
{ uint32_t i = 0;
|
|
for(i = 0; i < 6; ++i)
|
|
ke8(cx->ks, i);
|
|
}
|
|
#endif
|
|
kef8(cx->ks, 6);
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 14 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
|
|
|
|
/* this is used to store the decryption round keys */
|
|
/* in forward or reverse order */
|
|
|
|
#ifdef AES_REV_DKS
|
|
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
|
|
#else
|
|
#define v(n,i) (i)
|
|
#endif
|
|
|
|
#if DEC_ROUND == NO_TABLES
|
|
#define ff(x) (x)
|
|
#else
|
|
#define ff(x) inv_mcol(x)
|
|
#if defined( dec_imvars )
|
|
#define d_vars dec_imvars
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(AES_128) || defined( AES_VAR )
|
|
|
|
#define k4e(k,i) \
|
|
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
|
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
|
|
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
|
|
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#if 1
|
|
|
|
#define kdf4(k,i) \
|
|
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
|
|
ss[1] = ss[1] ^ ss[3]; \
|
|
ss[2] = ss[2] ^ ss[3]; \
|
|
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
|
ss[i % 4] ^= ss[4]; \
|
|
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
|
|
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
|
|
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
|
|
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
|
|
}
|
|
|
|
#define kd4(k,i) \
|
|
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
|
|
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
|
|
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
|
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
|
|
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
|
|
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
|
|
}
|
|
|
|
#define kdl4(k,i) \
|
|
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
|
|
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
|
|
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
|
|
k[v(40,(4*(i))+6)] = ss[0]; \
|
|
k[v(40,(4*(i))+7)] = ss[1]; \
|
|
}
|
|
|
|
#else
|
|
|
|
#define kdf4(k,i) \
|
|
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
|
|
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
|
|
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
|
|
}
|
|
|
|
#define kd4(k,i) \
|
|
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
|
|
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
|
|
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
|
|
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
|
|
}
|
|
|
|
#define kdl4(k,i) \
|
|
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
|
|
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
|
|
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
|
|
}
|
|
|
|
#endif
|
|
|
|
AES_RETURN aes_xi(decrypt_key128)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
|
{ uint32_t ss[5] = {0};
|
|
#if defined( d_vars )
|
|
d_vars;
|
|
#endif
|
|
|
|
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
|
|
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
|
|
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
|
|
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
|
|
|
|
#ifdef DEC_KS_UNROLL
|
|
kdf4(cx->ks, 0); kd4(cx->ks, 1);
|
|
kd4(cx->ks, 2); kd4(cx->ks, 3);
|
|
kd4(cx->ks, 4); kd4(cx->ks, 5);
|
|
kd4(cx->ks, 6); kd4(cx->ks, 7);
|
|
kd4(cx->ks, 8); kdl4(cx->ks, 9);
|
|
#else
|
|
{ uint32_t i = 0;
|
|
for(i = 0; i < 10; ++i)
|
|
k4e(cx->ks, i);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 10 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#endif
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 10 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_192) || defined( AES_VAR )
|
|
|
|
#define k6ef(k,i) \
|
|
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
|
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
|
|
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
|
|
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define k6e(k,i) \
|
|
{ k6ef(k,i); \
|
|
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
|
|
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
|
|
}
|
|
|
|
#define kdf6(k,i) \
|
|
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
|
|
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
|
|
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
|
|
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
|
|
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
|
|
}
|
|
|
|
#define kd6(k,i) \
|
|
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
|
|
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
|
|
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
|
|
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
|
|
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
|
|
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
|
|
}
|
|
|
|
#define kdl6(k,i) \
|
|
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
|
|
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
|
|
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
|
|
}
|
|
|
|
AES_RETURN aes_xi(decrypt_key192)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
|
{ uint32_t ss[7] = {0};
|
|
#if defined( d_vars )
|
|
d_vars;
|
|
#endif
|
|
|
|
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
|
|
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
|
|
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
|
|
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
|
|
|
|
#ifdef DEC_KS_UNROLL
|
|
ss[4] = word_in(key, 4);
|
|
ss[5] = word_in(key, 5);
|
|
cx->ks[v(48,(4))] = ff(ss[4]);
|
|
cx->ks[v(48,(5))] = ff(ss[5]);
|
|
kdf6(cx->ks, 0); kd6(cx->ks, 1);
|
|
kd6(cx->ks, 2); kd6(cx->ks, 3);
|
|
kd6(cx->ks, 4); kd6(cx->ks, 5);
|
|
kd6(cx->ks, 6); kdl6(cx->ks, 7);
|
|
#else
|
|
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
|
|
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
|
|
{ uint32_t i = 0;
|
|
|
|
for(i = 0; i < 7; ++i)
|
|
k6e(cx->ks, i);
|
|
k6ef(cx->ks, 7);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 12 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#endif
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 12 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(AES_256) || defined( AES_VAR )
|
|
|
|
#define k8ef(k,i) \
|
|
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
|
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
|
|
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
|
|
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
|
|
}
|
|
|
|
#define k8e(k,i) \
|
|
{ k8ef(k,i); \
|
|
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
|
|
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
|
|
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
|
|
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
|
|
}
|
|
|
|
#define kdf8(k,i) \
|
|
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
|
|
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
|
|
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
|
|
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
|
|
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
|
|
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
|
|
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
|
|
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
|
|
}
|
|
|
|
#define kd8(k,i) \
|
|
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
|
|
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
|
|
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
|
|
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
|
|
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
|
|
ss[8] = ls_box(ss[3],0); \
|
|
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
|
|
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
|
|
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
|
|
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
|
|
}
|
|
|
|
#define kdl8(k,i) \
|
|
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
|
|
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
|
|
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
|
|
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
|
|
}
|
|
|
|
AES_RETURN aes_xi(decrypt_key256)(const unsigned char *key, aes_decrypt_ctx cx[1])
|
|
{ uint32_t ss[9] = {0};
|
|
#if defined( d_vars )
|
|
d_vars;
|
|
#endif
|
|
|
|
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
|
|
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
|
|
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
|
|
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
|
|
|
|
#ifdef DEC_KS_UNROLL
|
|
ss[4] = word_in(key, 4);
|
|
ss[5] = word_in(key, 5);
|
|
ss[6] = word_in(key, 6);
|
|
ss[7] = word_in(key, 7);
|
|
cx->ks[v(56,(4))] = ff(ss[4]);
|
|
cx->ks[v(56,(5))] = ff(ss[5]);
|
|
cx->ks[v(56,(6))] = ff(ss[6]);
|
|
cx->ks[v(56,(7))] = ff(ss[7]);
|
|
kdf8(cx->ks, 0); kd8(cx->ks, 1);
|
|
kd8(cx->ks, 2); kd8(cx->ks, 3);
|
|
kd8(cx->ks, 4); kd8(cx->ks, 5);
|
|
kdl8(cx->ks, 6);
|
|
#else
|
|
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
|
|
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
|
|
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
|
|
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
|
|
{ uint32_t i = 0;
|
|
|
|
for(i = 0; i < 6; ++i)
|
|
k8e(cx->ks, i);
|
|
k8ef(cx->ks, 6);
|
|
#if !(DEC_ROUND == NO_TABLES)
|
|
for(i = N_COLS; i < 14 * N_COLS; ++i)
|
|
cx->ks[i] = inv_mcol(cx->ks[i]);
|
|
#endif
|
|
}
|
|
#endif
|
|
cx->inf.l = 0;
|
|
cx->inf.b[0] = 14 * AES_BLOCK_SIZE;
|
|
|
|
#ifdef USE_VIA_ACE_IF_PRESENT
|
|
if(VIA_ACE_AVAILABLE)
|
|
cx->inf.b[1] = 0xff;
|
|
#endif
|
|
return EXIT_SUCCESS;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if defined( AES_VAR )
|
|
|
|
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
|
|
{
|
|
switch(key_len)
|
|
{
|
|
case 16: case 128: return aes_encrypt_key128(key, cx);
|
|
case 24: case 192: return aes_encrypt_key192(key, cx);
|
|
case 32: case 256: return aes_encrypt_key256(key, cx);
|
|
default: return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
|
|
{
|
|
switch(key_len)
|
|
{
|
|
case 16: case 128: return aes_decrypt_key128(key, cx);
|
|
case 24: case 192: return aes_decrypt_key192(key, cx);
|
|
case 32: case 256: return aes_decrypt_key256(key, cx);
|
|
default: return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|