1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-15 01:40:57 +00:00
trezor-firmware/legacy/firmware/fsm_msg_crypto.h
2022-11-01 14:56:00 +01:00

341 lines
11 KiB
C

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (C) 2018 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
static uint8_t cosi_nonce[32] = {0};
static uint8_t cosi_commitment[32] = {0};
static bool cosi_nonce_is_set = false;
void fsm_msgCipherKeyValue(const CipherKeyValue *msg) {
CHECK_INITIALIZED
CHECK_PARAM(msg->value.size % 16 == 0,
_("Value length must be a multiple of 16"));
CHECK_PIN
const HDNode *node = fsm_getDerivedNode(SECP256K1_NAME, msg->address_n,
msg->address_n_count, NULL);
if (!node) return;
bool encrypt = msg->has_encrypt && msg->encrypt;
bool ask_on_encrypt = msg->has_ask_on_encrypt && msg->ask_on_encrypt;
bool ask_on_decrypt = msg->has_ask_on_decrypt && msg->ask_on_decrypt;
if ((encrypt && ask_on_encrypt) || (!encrypt && ask_on_decrypt)) {
layoutCipherKeyValue(encrypt, msg->key);
if (!protectButton(ButtonRequestType_ButtonRequest_Other, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
layoutHome();
return;
}
}
uint8_t data[256 + 4];
strlcpy((char *)data, msg->key, sizeof(data));
strlcat((char *)data, ask_on_encrypt ? "E1" : "E0", sizeof(data));
strlcat((char *)data, ask_on_decrypt ? "D1" : "D0", sizeof(data));
hmac_sha512(node->private_key, 32, data, strlen((char *)data), data);
if (msg->iv.size == 16) {
// override iv if provided
memcpy(data + 32, msg->iv.bytes, 16);
}
RESP_INIT(CipheredKeyValue);
if (encrypt) {
aes_encrypt_ctx ctx;
aes_encrypt_key256(data, &ctx);
aes_cbc_encrypt(msg->value.bytes, resp->value.bytes, msg->value.size,
data + 32, &ctx);
} else {
aes_decrypt_ctx ctx;
aes_decrypt_key256(data, &ctx);
aes_cbc_decrypt(msg->value.bytes, resp->value.bytes, msg->value.size,
data + 32, &ctx);
}
resp->value.size = msg->value.size;
msg_write(MessageType_MessageType_CipheredKeyValue, resp);
layoutHome();
}
void fsm_msgSignIdentity(const SignIdentity *msg) {
RESP_INIT(SignedIdentity);
CHECK_INITIALIZED
CHECK_PIN
layoutSignIdentity(&(msg->identity),
msg->has_challenge_visual ? msg->challenge_visual : 0);
if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
layoutHome();
return;
}
uint8_t hash[32];
if (cryptoIdentityFingerprint(&(msg->identity), hash) == 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Invalid identity"));
layoutHome();
return;
}
uint32_t address_n[5];
address_n[0] = PATH_HARDENED | 13;
address_n[1] = PATH_HARDENED | hash[0] | (hash[1] << 8) | (hash[2] << 16) |
((uint32_t)hash[3] << 24);
address_n[2] = PATH_HARDENED | hash[4] | (hash[5] << 8) | (hash[6] << 16) |
((uint32_t)hash[7] << 24);
address_n[3] = PATH_HARDENED | hash[8] | (hash[9] << 8) | (hash[10] << 16) |
((uint32_t)hash[11] << 24);
address_n[4] = PATH_HARDENED | hash[12] | (hash[13] << 8) | (hash[14] << 16) |
((uint32_t)hash[15] << 24);
const char *curve = SECP256K1_NAME;
if (msg->has_ecdsa_curve_name) {
curve = msg->ecdsa_curve_name;
}
HDNode *node = fsm_getDerivedNode(curve, address_n, 5, NULL);
if (!node) return;
bool sign_ssh =
msg->identity.has_proto && (strcmp(msg->identity.proto, "ssh") == 0);
bool sign_gpg =
msg->identity.has_proto && (strcmp(msg->identity.proto, "gpg") == 0);
bool sign_signify =
msg->identity.has_proto && (strcmp(msg->identity.proto, "signify") == 0);
int result = 0;
layoutProgressSwipe(_("Signing"), 0);
if (sign_ssh) { // SSH does not sign visual challenge
result = sshMessageSign(node, msg->challenge_hidden.bytes,
msg->challenge_hidden.size, resp->signature.bytes);
} else if (sign_gpg) { // GPG should sign a message digest
result = gpgMessageSign(node, msg->challenge_hidden.bytes,
msg->challenge_hidden.size, resp->signature.bytes);
} else if (sign_signify) { // Signify should sign a message digest
result =
signifyMessageSign(node, msg->challenge_hidden.bytes,
msg->challenge_hidden.size, resp->signature.bytes);
} else {
uint8_t digest[64];
sha256_Raw(msg->challenge_hidden.bytes, msg->challenge_hidden.size, digest);
sha256_Raw((const uint8_t *)msg->challenge_visual,
strlen(msg->challenge_visual), digest + 32);
result = cryptoMessageSign(&(coins[0]), node, InputScriptType_SPENDADDRESS,
false, digest, 64, resp->signature.bytes);
}
if (result == 0) {
if (hdnode_fill_public_key(node) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to derive public key"));
layoutHome();
return;
}
if (strcmp(curve, SECP256K1_NAME) != 0) {
resp->has_address = false;
} else {
resp->has_address = true;
// hardcoded Bitcoin address type
if (hdnode_get_address(node, 0x00, resp->address,
sizeof(resp->address)) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to get address"));
layoutHome();
return;
}
}
resp->public_key.size = 33;
memcpy(resp->public_key.bytes, node->public_key, 33);
if (node->public_key[0] == 1) {
/* ed25519 public key */
resp->public_key.bytes[0] = 0;
}
resp->signature.size = 65;
msg_write(MessageType_MessageType_SignedIdentity, resp);
} else {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Error signing identity"));
}
layoutHome();
}
void fsm_msgGetECDHSessionKey(const GetECDHSessionKey *msg) {
RESP_INIT(ECDHSessionKey);
CHECK_INITIALIZED
CHECK_PIN
layoutDecryptIdentity(&msg->identity);
if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
layoutHome();
return;
}
uint8_t hash[32];
if (cryptoIdentityFingerprint(&(msg->identity), hash) == 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Invalid identity"));
layoutHome();
return;
}
uint32_t address_n[5];
address_n[0] = PATH_HARDENED | 17;
address_n[1] = PATH_HARDENED | hash[0] | (hash[1] << 8) | (hash[2] << 16) |
((uint32_t)hash[3] << 24);
address_n[2] = PATH_HARDENED | hash[4] | (hash[5] << 8) | (hash[6] << 16) |
((uint32_t)hash[7] << 24);
address_n[3] = PATH_HARDENED | hash[8] | (hash[9] << 8) | (hash[10] << 16) |
((uint32_t)hash[11] << 24);
address_n[4] = PATH_HARDENED | hash[12] | (hash[13] << 8) | (hash[14] << 16) |
((uint32_t)hash[15] << 24);
const char *curve = SECP256K1_NAME;
if (msg->has_ecdsa_curve_name) {
curve = msg->ecdsa_curve_name;
}
HDNode *node = fsm_getDerivedNode(curve, address_n, 5, NULL);
if (!node) return;
int result_size = 0;
if (hdnode_get_shared_key(node, msg->peer_public_key.bytes,
resp->session_key.bytes, &result_size) == 0) {
resp->session_key.size = result_size;
if (hdnode_fill_public_key(node) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Failed to derive public key"));
layoutHome();
return;
}
memcpy(resp->public_key.bytes, node->public_key, 33);
resp->public_key.size = 33;
resp->has_public_key = true;
msg_write(MessageType_MessageType_ECDHSessionKey, resp);
} else {
fsm_sendFailure(FailureType_Failure_ProcessError,
_("Error getting ECDH session key"));
}
layoutHome();
}
static bool fsm_checkCosiPath(uint32_t address_n_count,
const uint32_t *address_n) {
// The path should typically match "m / 10018' / [0-9]'", but we allow
// any path from the SLIP-18 domain "m / 10018' / *".
if (address_n_count >= 1 && address_n[0] == PATH_HARDENED + 10018) {
return true;
}
if (config_getSafetyCheckLevel() == SafetyCheckLevel_Strict) {
fsm_sendFailure(FailureType_Failure_DataError, _("Forbidden key path"));
return false;
}
return fsm_layoutPathWarning();
}
void fsm_msgCosiCommit(const CosiCommit *msg) {
RESP_INIT(CosiCommitment);
CHECK_INITIALIZED
CHECK_PIN
if (!fsm_checkCosiPath(msg->address_n_count, msg->address_n)) {
layoutHome();
return;
}
const HDNode *node = fsm_getDerivedNode(ED25519_NAME, msg->address_n,
msg->address_n_count, NULL);
if (!node) return;
if (!cosi_nonce_is_set) {
ed25519_cosi_commit(cosi_nonce, cosi_commitment);
cosi_nonce_is_set = true;
}
resp->commitment.size = 32;
resp->pubkey.size = 32;
memcpy(resp->commitment.bytes, cosi_commitment, sizeof(cosi_commitment));
ed25519_publickey(node->private_key, resp->pubkey.bytes);
msg_write(MessageType_MessageType_CosiCommitment, resp);
layoutHome();
}
void fsm_msgCosiSign(const CosiSign *msg) {
RESP_INIT(CosiSignature);
CHECK_INITIALIZED
CHECK_PARAM(msg->global_commitment.size == 32,
_("Invalid global commitment"));
CHECK_PARAM(msg->global_pubkey.size == 32, _("Invalid global pubkey"));
if (!cosi_nonce_is_set) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("CoSi nonce not set"));
layoutHome();
return;
}
if (!fsm_checkCosiPath(msg->address_n_count, msg->address_n)) {
layoutHome();
return;
}
CHECK_PIN
layoutCosiSign(msg->address_n, msg->address_n_count, msg->data.bytes,
msg->data.size);
if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
layoutHome();
return;
}
const HDNode *node = fsm_getDerivedNode(ED25519_NAME, msg->address_n,
msg->address_n_count, NULL);
if (!node) return;
resp->signature.size = 32;
cosi_nonce_is_set = false;
if (ed25519_cosi_sign(msg->data.bytes, msg->data.size, node->private_key,
cosi_nonce, msg->global_commitment.bytes,
msg->global_pubkey.bytes, resp->signature.bytes) == 0) {
msg_write(MessageType_MessageType_CosiSignature, resp);
} else {
fsm_sendFailure(FailureType_Failure_FirmwareError, NULL);
}
fsm_clearCosiNonce();
layoutHome();
}
void fsm_clearCosiNonce(void) {
cosi_nonce_is_set = false;
memzero(cosi_nonce, sizeof(cosi_nonce));
}