You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
trezor-firmware/core/embed/trezorhal/stm32f4/displays/st7789v.c

473 lines
15 KiB

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <stdint.h>
#include TREZOR_BOARD
#include "backlight_pwm.h"
#include "display_interface.h"
#include "memzero.h"
#include "st7789v.h"
#include STM32_HAL_H
#ifdef TREZOR_MODEL_T
#include "displays/panels/154a.h"
#include "displays/panels/lx154a2411.h"
#include "displays/panels/lx154a2422.h"
#include "displays/panels/tf15411a.h"
#endif
// using const volatile instead of #define results in binaries that change
// only in 1-byte when the flag changes.
// using #define leads compiler to over-optimize the code leading to bigger
// differencies in the resulting binaries.
const volatile uint8_t DISPLAY_ST7789V_INVERT_COLORS = 1;
// FSMC/FMC Bank 1 - NOR/PSRAM 1
#define DISPLAY_MEMORY_BASE 0x60000000
#define DISPLAY_MEMORY_PIN 16
#ifdef USE_DISP_I8080_16BIT_DW
#define DISPLAY_ADDR_SHIFT 2
#elif USE_DISP_I8080_8BIT_DW
#define DISPLAY_ADDR_SHIFT 1
#endif
__IO DISP_MEM_TYPE *const DISPLAY_CMD_ADDRESS =
(__IO DISP_MEM_TYPE *const)((uint32_t)DISPLAY_MEMORY_BASE);
__IO DISP_MEM_TYPE *const DISPLAY_DATA_ADDRESS =
(__IO DISP_MEM_TYPE *const)((uint32_t)DISPLAY_MEMORY_BASE |
(DISPLAY_ADDR_SHIFT << DISPLAY_MEMORY_PIN));
// section "9.1.3 RDDID (04h): Read Display ID"
// of ST7789V datasheet
#define DISPLAY_ID_ST7789V 0x858552U
// section "6.2.1. Read display identification information (04h)"
// of GC9307 datasheet
#define DISPLAY_ID_GC9307 0x009307U
// section "8.3.23 Read ID4 (D3h)"
// of ILI9341V datasheet
#define DISPLAY_ID_ILI9341V 0x009341U
static int DISPLAY_ORIENTATION = -1;
void display_pixeldata(uint16_t c) { PIXELDATA(c); }
static uint32_t read_display_id(uint8_t command) {
volatile uint8_t c = 0;
uint32_t id = 0;
CMD(command);
c = *DISPLAY_DATA_ADDRESS; // first returned value is a dummy value and
// should be discarded
c = *DISPLAY_DATA_ADDRESS;
id |= (c << 16);
c = *DISPLAY_DATA_ADDRESS;
id |= (c << 8);
c = *DISPLAY_DATA_ADDRESS;
id |= c;
return id;
}
static uint32_t display_identify(void) {
static uint32_t id = 0x000000U;
static char id_set = 0;
if (id_set) return id; // return if id has been already set
id = read_display_id(0x04); // RDDID: Read Display ID
// the default RDDID for ILI9341 should be 0x8000.
// some display modules return 0x0.
// the ILI9341 has an extra id, let's check it here.
if ((id != DISPLAY_ID_ST7789V) &&
(id != DISPLAY_ID_GC9307)) { // if not ST7789V and not GC9307
uint32_t id4 = read_display_id(0xD3); // Read ID4
if (id4 == DISPLAY_ID_ILI9341V) { // definitely found a ILI9341
id = id4;
}
}
id_set = 1;
return id;
}
bool display_is_inverted() {
bool inv_on = false;
uint32_t id = display_identify();
if (id == DISPLAY_ID_ST7789V) {
volatile uint8_t c = 0;
CMD(0x09); // read display status
c = *DISPLAY_DATA_ADDRESS; // don't care
c = *DISPLAY_DATA_ADDRESS; // don't care
c = *DISPLAY_DATA_ADDRESS; // don't care
c = *DISPLAY_DATA_ADDRESS;
if (c & 0x20) {
inv_on = true;
}
c = *DISPLAY_DATA_ADDRESS; // don't care
}
return inv_on;
}
void display_reset_state() {}
static void __attribute__((unused)) display_sleep(void) {
uint32_t id = display_identify();
if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) ||
(id == DISPLAY_ID_ST7789V)) {
CMD(0x28); // DISPOFF: Display Off
CMD(0x10); // SLPIN: Sleep in
HAL_Delay(5); // need to wait 5 milliseconds after "sleep in" before
// sending any new commands
}
}
static void display_unsleep(void) {
uint32_t id = display_identify();
if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) ||
(id == DISPLAY_ID_ST7789V)) {
CMD(0x11); // SLPOUT: Sleep Out
HAL_Delay(5); // need to wait 5 milliseconds after "sleep out" before
// sending any new commands
CMD(0x29); // DISPON: Display On
}
}
static struct { uint16_t x, y; } BUFFER_OFFSET;
void display_set_window(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
x0 += BUFFER_OFFSET.x;
x1 += BUFFER_OFFSET.x;
y0 += BUFFER_OFFSET.y;
y1 += BUFFER_OFFSET.y;
uint32_t id = display_identify();
if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) ||
(id == DISPLAY_ID_ST7789V)) {
CMD(0x2A);
DATA(x0 >> 8);
DATA(x0 & 0xFF);
DATA(x1 >> 8);
DATA(x1 & 0xFF); // column addr set
CMD(0x2B);
DATA(y0 >> 8);
DATA(y0 & 0xFF);
DATA(y1 >> 8);
DATA(y1 & 0xFF); // row addr set
CMD(0x2C);
}
}
int display_orientation(int degrees) {
if (degrees != DISPLAY_ORIENTATION) {
if (degrees == 0 || degrees == 90 || degrees == 180 || degrees == 270) {
DISPLAY_ORIENTATION = degrees;
display_set_window(0, 0, MAX_DISPLAY_RESX - 1, MAX_DISPLAY_RESY - 1);
for (uint32_t i = 0; i < MAX_DISPLAY_RESX * MAX_DISPLAY_RESY; i++) {
// 2 bytes per pixel because we're using RGB 5-6-5 format
PIXELDATA(0x0000);
}
uint16_t shift = 0;
char BX = 0, BY = 0;
uint32_t id = display_identify();
if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) ||
(id == DISPLAY_ID_ST7789V)) {
#define RGB (1 << 3)
#define ML (1 << 4) // vertical refresh order
#define MH (1 << 2) // horizontal refresh order
#define MV (1 << 5)
#define MX (1 << 6)
#define MY (1 << 7)
// MADCTL: Memory Data Access Control - reference:
// section 9.3 in the ILI9341 manual
// section 6.2.18 in the GC9307 manual
// section 8.12 in the ST7789V manual
uint8_t display_command_parameter = 0;
switch (degrees) {
case 0:
display_command_parameter = 0;
BY = (id == DISPLAY_ID_GC9307);
break;
case 90:
display_command_parameter = MV | MX | MH | ML;
BX = (id != DISPLAY_ID_GC9307);
shift = 1;
break;
case 180:
display_command_parameter = MX | MY | MH | ML;
BY = (id == DISPLAY_ID_GC9307);
shift = 1;
break;
case 270:
display_command_parameter = MV | MY;
BX = (id != DISPLAY_ID_GC9307);
break;
}
if (id == DISPLAY_ID_GC9307) {
display_command_parameter ^= RGB | MY; // XOR RGB and MY settings
}
CMD(0x36);
DATA(display_command_parameter);
if (shift) {
// GATECTRL: Gate Control; NL = 240 gate lines, first scan line is
// gate 80.; gate scan direction 319 -> 0
CMD(0xE4);
DATA(0x1D);
DATA(0x00);
DATA(0x11);
} else {
// GATECTRL: Gate Control; NL = 240 gate lines, first scan line is
// gate 80.; gate scan direction 319 -> 0
CMD(0xE4);
DATA(0x1D);
DATA(0x0A);
DATA(0x11);
}
// reset the column and page extents
display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1);
}
BUFFER_OFFSET.x = BX ? (MAX_DISPLAY_RESY - DISPLAY_RESY) : 0;
BUFFER_OFFSET.y = BY ? (MAX_DISPLAY_RESY - DISPLAY_RESY) : 0;
}
}
return DISPLAY_ORIENTATION;
}
int display_get_orientation(void) { return DISPLAY_ORIENTATION; }
int display_backlight(int val) { return backlight_pwm_set(val); }
void display_init_seq(void) {
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET); // LCD_RST/PC14
// wait 10 milliseconds. only needs to be low for 10 microseconds.
// my dev display module ties display reset and touch panel reset together.
// keeping this low for max(display_reset_time, ctpm_reset_time) aids
// development and does not hurt.
HAL_Delay(10);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_SET); // LCD_RST/PC14
// max wait time for hardware reset is 120 milliseconds
// (experienced display flakiness using only 5ms wait before sending commands)
HAL_Delay(120);
// identify the controller we will communicate with
#ifdef TREZOR_MODEL_T
uint32_t id = display_identify();
if (id == DISPLAY_ID_GC9307) {
tf15411a_init_seq();
} else if (id == DISPLAY_ID_ST7789V) {
if (DISPLAY_ST7789V_INVERT_COLORS) {
lx154a2422_init_seq();
} else {
lx154a2411_init_seq();
}
} else if (id == DISPLAY_ID_ILI9341V) {
_154a_init_seq();
}
#else
DISPLAY_PANEL_INIT_SEQ();
#endif
display_unsleep();
}
void display_setup_fmc(void) {
// Reference UM1725 "Description of STM32F4 HAL and LL drivers",
// section 64.2.1 "How to use this driver"
SRAM_HandleTypeDef external_display_data_sram = {0};
external_display_data_sram.Instance = FMC_NORSRAM_DEVICE;
external_display_data_sram.Extended = FMC_NORSRAM_EXTENDED_DEVICE;
external_display_data_sram.Init.NSBank = FMC_NORSRAM_BANK1;
external_display_data_sram.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE;
external_display_data_sram.Init.MemoryType = FMC_MEMORY_TYPE_SRAM;
#ifdef USE_DISP_I8080_16BIT_DW
external_display_data_sram.Init.MemoryDataWidth =
FMC_NORSRAM_MEM_BUS_WIDTH_16;
#elif USE_DISP_I8080_8BIT_DW
external_display_data_sram.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_8;
#endif
external_display_data_sram.Init.BurstAccessMode =
FMC_BURST_ACCESS_MODE_DISABLE;
external_display_data_sram.Init.WaitSignalPolarity =
FMC_WAIT_SIGNAL_POLARITY_LOW;
external_display_data_sram.Init.WrapMode = FMC_WRAP_MODE_DISABLE;
external_display_data_sram.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS;
external_display_data_sram.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE;
external_display_data_sram.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE;
external_display_data_sram.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE;
external_display_data_sram.Init.AsynchronousWait =
FMC_ASYNCHRONOUS_WAIT_DISABLE;
external_display_data_sram.Init.WriteBurst = FMC_WRITE_BURST_DISABLE;
external_display_data_sram.Init.ContinuousClock =
FMC_CONTINUOUS_CLOCK_SYNC_ONLY;
external_display_data_sram.Init.PageSize = FMC_PAGE_SIZE_NONE;
// reference RM0090 section 37.5 Table 259, 37.5.4, Mode 1 SRAM, and 37.5.6
FMC_NORSRAM_TimingTypeDef normal_mode_timing = {0};
normal_mode_timing.AddressSetupTime = 5;
normal_mode_timing.AddressHoldTime = 1; // don't care
normal_mode_timing.DataSetupTime = 6;
normal_mode_timing.BusTurnAroundDuration = 0; // don't care
normal_mode_timing.CLKDivision = 2; // don't care
normal_mode_timing.DataLatency = 2; // don't care
normal_mode_timing.AccessMode = FMC_ACCESS_MODE_A;
HAL_SRAM_Init(&external_display_data_sram, &normal_mode_timing, NULL);
}
void display_init(void) {
// init peripherals
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_FMC_CLK_ENABLE();
backlight_pwm_init();
GPIO_InitTypeDef GPIO_InitStructure;
// LCD_RST/PC14
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStructure.Alternate = 0;
GPIO_InitStructure.Pin = GPIO_PIN_14;
// default to keeping display in reset
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET);
HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
// LCD_FMARK/PD12 (tearing effect)
GPIO_InitStructure.Mode = GPIO_MODE_INPUT;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStructure.Alternate = 0;
GPIO_InitStructure.Pin = GPIO_PIN_12;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
GPIO_InitStructure.Pull = GPIO_NOPULL;
GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStructure.Alternate = GPIO_AF12_FMC;
// LCD_CS/PD7 LCD_RS/PD11 LCD_RD/PD4 LCD_WR/PD5
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_11 | GPIO_PIN_4 | GPIO_PIN_5;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
// LCD_D0/PD14 LCD_D1/PD15 LCD_D2/PD0 LCD_D3/PD1
GPIO_InitStructure.Pin = GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_0 | GPIO_PIN_1;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
// LCD_D4/PE7 LCD_D5/PE8 LCD_D6/PE9 LCD_D7/PE10
GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
#ifdef USE_DISP_I8080_16BIT_DW
// LCD_D8/PE11 LCD_D9/PE12 LCD_D10/PE13 LCD_D11/PE14
GPIO_InitStructure.Pin =
GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14;
HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
// LCD_D12/PE15
GPIO_InitStructure.Pin = GPIO_PIN_15;
HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
// LCD_D13/PD8 LCD_D14/PD9 LCD_D15/PD10
GPIO_InitStructure.Pin = GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
#endif
display_setup_fmc();
display_init_seq();
display_set_little_endian();
}
void display_reinit(void) {
// reinitialize FMC to set correct timing, have to do this in reinit because
// boardloader is fixed.
display_setup_fmc();
// important for model T as this is not set in boardloader
display_set_little_endian();
DISPLAY_ORIENTATION = 0;
backlight_pwm_reinit();
#ifdef TREZOR_MODEL_T
uint32_t id = display_identify();
if (id == DISPLAY_ID_ST7789V && display_is_inverted()) {
// newest TT display - set proper gamma
lx154a2422_gamma();
} else if (id == DISPLAY_ID_ST7789V) {
lx154a2411_gamma();
}
#endif
}
void display_sync(void) {
uint32_t id = display_identify();
if (id && (id != DISPLAY_ID_GC9307)) {
// synchronize with the panel synchronization signal
// in order to avoid visual tearing effects
while (GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12)) {
}
while (GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12)) {
}
}
}
void display_refresh(void) {}
void display_set_little_endian(void) {
uint32_t id = display_identify();
if (id == DISPLAY_ID_GC9307) {
// CANNOT SET ENDIAN FOR GC9307
} else if (id == DISPLAY_ID_ST7789V) {
CMD(0xB0);
DATA(0x00);
DATA(0xF8);
} else if (id == DISPLAY_ID_ILI9341V) {
// Interface Control: XOR BGR as ST7789V does
CMD(0xF6);
DATA(0x09);
DATA(0x30);
DATA(0x20);
}
}
void display_set_big_endian(void) {
uint32_t id = display_identify();
if (id == DISPLAY_ID_GC9307) {
// CANNOT SET ENDIAN FOR GC9307
} else if (id == DISPLAY_ID_ST7789V) {
CMD(0xB0);
DATA(0x00);
DATA(0xF0);
} else if (id == DISPLAY_ID_ILI9341V) {
// Interface Control: XOR BGR as ST7789V does
CMD(0xF6);
DATA(0x09);
DATA(0x30);
DATA(0x00);
}
}
const char *display_save(const char *prefix) { return NULL; }
void display_clear_save(void) {}