1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-10 15:30:55 +00:00
trezor-firmware/core/embed/projects/prodtest/main.c

1282 lines
32 KiB
C

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <trezor_bsp.h> // required by #ifdef STM32U5 below (see #4306 issue)
#include <trezor_model.h>
#include <trezor_rtl.h>
#include <ctype.h>
#include <stdlib.h>
#include <sys/types.h>
#include <gfx/fonts.h>
#include <gfx/gfx_draw.h>
#include <io/display.h>
#include <io/display_utils.h>
#include <io/usb.h>
#include <sec/random_delays.h>
#include <sys/bootutils.h>
#include <sys/mpu.h>
#include <sys/system.h>
#include <sys/systick.h>
#include <sys/systimer.h>
#include <util/board_capabilities.h>
#include <util/flash.h>
#include <util/flash_otp.h>
#include <util/fwutils.h>
#include <util/image.h>
#include <util/rsod.h>
#include "prodtest_common.h"
#include "version.h"
#ifdef USE_BUTTON
#include <io/button.h>
#endif
#ifdef USE_SBU
#include <io/sbu.h>
#endif
#ifdef USE_SD_CARD
#include <io/sdcard.h>
#endif
#ifdef USE_TOUCH
#include <io/touch.h>
#endif
#ifdef USE_OPTIGA
#include <sec/optiga_commands.h>
#include <sec/optiga_transport.h>
#include "optiga_prodtest.h"
#endif
#ifdef USE_HAPTIC
#include <io/haptic.h>
#endif
#ifdef USE_HASH_PROCESSOR
#include <sec/hash_processor.h>
#endif
#include "memzero.h"
#ifdef USE_POWERCTL
#include <sys/powerctl.h>
#include "../../sys/powerctl/npm1300/npm1300.h"
#include "../../sys/powerctl/stwlc38/stwlc38.h"
#endif
#ifdef USE_STORAGE_HWKEY
#include <sec/secure_aes.h>
#endif
#ifdef STM32U5
#include "stm32u5xx_ll_utils.h"
#else
#include "stm32f4xx_ll_utils.h"
#endif
#ifdef TREZOR_MODEL_T
#define MODEL_IDENTIFIER "TREZOR2-"
#else
#define MODEL_IDENTIFIER MODEL_INTERNAL_NAME "-"
#endif
static gfx_text_attr_t bold = {
.font = FONT_BOLD,
.fg_color = COLOR_WHITE,
.bg_color = COLOR_BLACK,
};
static secbool startswith(const char *s, const char *prefix) {
return sectrue * (0 == strncmp(s, prefix, strlen(prefix)));
}
static void vcp_intr(void) {
gfx_clear();
error_shutdown("vcp_intr");
}
static char vcp_getchar(void) {
uint8_t c = 0;
int r = usb_vcp_read_blocking(VCP_IFACE, &c, 1, -1);
(void)r;
return (char)c;
}
static void vcp_readline(char *buf, size_t len) {
for (;;) {
char c = vcp_getchar();
if (c == '\r') {
vcp_puts("\r\n", 2);
break;
}
if (c < 32 || c > 126) { // not printable
continue;
}
if (len > 1) { // leave space for \0
*buf = c;
buf++;
len--;
vcp_puts(&c, 1);
}
}
if (len > 0) {
*buf = '\0';
}
}
static void usb_init_all(void) {
enum {
VCP_PACKET_LEN = 64,
VCP_BUFFER_LEN = 1024,
};
static const usb_dev_info_t dev_info = {
.device_class = 0xEF, // Composite Device Class
.device_subclass = 0x02, // Common Class
.device_protocol = 0x01, // Interface Association Descriptor
.vendor_id = 0x1209,
.product_id = 0x53C1,
.release_num = 0x0400,
.manufacturer = MODEL_USB_MANUFACTURER,
.product = MODEL_USB_PRODUCT,
.serial_number = "000000000000",
.interface = "TREZOR Interface",
.usb21_enabled = secfalse,
.usb21_landing = secfalse,
};
static uint8_t tx_packet[VCP_PACKET_LEN];
static uint8_t tx_buffer[VCP_BUFFER_LEN];
static uint8_t rx_packet[VCP_PACKET_LEN];
static uint8_t rx_buffer[VCP_BUFFER_LEN];
static const usb_vcp_info_t vcp_info = {
.tx_packet = tx_packet,
.tx_buffer = tx_buffer,
.rx_packet = rx_packet,
.rx_buffer = rx_buffer,
.tx_buffer_len = VCP_BUFFER_LEN,
.rx_buffer_len = VCP_BUFFER_LEN,
.rx_intr_fn = vcp_intr,
.rx_intr_byte = 3, // Ctrl-C
.iface_num = VCP_IFACE,
.data_iface_num = 0x01,
.ep_cmd = 0x02,
.ep_in = 0x01,
.ep_out = 0x01,
.polling_interval = 10,
.max_packet_len = VCP_PACKET_LEN,
};
ensure(usb_init(&dev_info), NULL);
ensure(usb_vcp_add(&vcp_info), "usb_vcp_add");
ensure(usb_start(), NULL);
}
void extract_params(const char *str, int *numbers, int *count, int max_count) {
int i = 0;
int num_index = 0;
int len = strlen(str);
char buffer[20]; // buffer to hold the current number string
while (i < len && num_index < max_count) {
if (isdigit((int)str[i])) {
int buffer_index = 0;
// Extract the number
while (isdigit((int)str[i]) && i < len) {
buffer[buffer_index++] = str[i++];
}
buffer[buffer_index] = '\0'; // null-terminate the string
// Convert the extracted string to an integer
numbers[num_index++] = atoi(buffer);
} else {
i++;
}
}
*count = num_index;
}
static void draw_border(int width, int padding) {
const int W = width, P = padding, RX = DISPLAY_RESX, RY = DISPLAY_RESY;
gfx_clear();
gfx_rect_t r_out = gfx_rect_wh(P, P, RX - 2 * P, RY - 2 * P);
gfx_rect_t r_in =
gfx_rect_wh(P + W, P + W, RX - 2 * (P + W), RY - 2 * (P + W));
gfx_draw_bar(r_out, COLOR_WHITE);
gfx_draw_bar(r_in, COLOR_BLACK);
display_refresh();
}
static void draw_welcome_screen(void) {
#if defined TREZOR_MODEL_R || defined TREZOR_MODEL_T3B1
gfx_draw_bar(gfx_rect_wh(0, 0, DISPLAY_RESX, DISPLAY_RESY), COLOR_WHITE);
display_refresh();
#else
draw_border(1, 3);
#endif
}
static void test_border(void) {
draw_border(2, 0);
vcp_println("OK");
}
static void test_display(const char *colors) {
gfx_clear();
size_t l = strlen(colors);
size_t w = DISPLAY_RESX / l;
for (size_t i = 0; i < l; i++) {
gfx_color_t c = COLOR_BLACK; // black
switch (colors[i]) {
case 'R':
c = gfx_color_rgb(255, 0, 0);
break;
case 'G':
c = gfx_color_rgb(0, 255, 0);
break;
case 'B':
c = gfx_color_rgb(0, 0, 255);
break;
case 'W':
c = COLOR_WHITE;
break;
}
gfx_rect_t r = gfx_rect_wh(i * w, 0, i * w + w, DISPLAY_RESY);
gfx_draw_bar(r, c);
}
display_refresh();
vcp_println("OK");
}
#ifdef USE_BUTTON
static secbool test_btn_press(uint32_t deadline, uint32_t btn) {
while (button_get_event() != (btn | BTN_EVT_DOWN)) {
if (systick_ms() > deadline) {
vcp_println("ERROR TIMEOUT");
return secfalse;
}
}
while (button_get_event() != (btn | BTN_EVT_UP)) {
if (systick_ms() > deadline) {
vcp_println("ERROR TIMEOUT");
return secfalse;
}
}
return sectrue;
}
static secbool test_btn_all(uint32_t deadline) {
bool left_pressed = 0;
bool right_pressed = 0;
while (true) {
uint32_t buttons = button_get_event();
if (buttons == (BTN_LEFT | BTN_EVT_DOWN)) {
left_pressed = 1;
}
if (buttons == (BTN_RIGHT | BTN_EVT_DOWN)) {
right_pressed = 1;
}
if (buttons == (BTN_LEFT | BTN_EVT_UP)) {
left_pressed = 0;
}
if (buttons == (BTN_RIGHT | BTN_EVT_UP)) {
right_pressed = 0;
}
if (left_pressed && right_pressed) {
break;
}
if (systick_ms() > deadline) {
vcp_println("ERROR TIMEOUT");
return secfalse;
}
}
while (true) {
uint32_t buttons = button_get_event();
if (buttons == (BTN_LEFT | BTN_EVT_DOWN)) {
left_pressed = 1;
}
if (buttons == (BTN_RIGHT | BTN_EVT_DOWN)) {
right_pressed = 1;
}
if (buttons == (BTN_LEFT | BTN_EVT_UP)) {
left_pressed = 0;
}
if (buttons == (BTN_RIGHT | BTN_EVT_UP)) {
right_pressed = 0;
}
if (!left_pressed && !right_pressed) {
break;
}
if (systick_ms() > deadline) {
vcp_println("ERROR TIMEOUT");
return secfalse;
}
}
return sectrue;
}
static void test_button(const char *args) {
int timeout = 0;
if (startswith(args, "LEFT ")) {
timeout = args[5] - '0';
uint32_t deadline = systick_ms() + timeout * 1000;
secbool r = test_btn_press(deadline, BTN_LEFT);
if (r == sectrue) vcp_println("OK");
}
if (startswith(args, "RIGHT ")) {
timeout = args[6] - '0';
uint32_t deadline = systick_ms() + timeout * 1000;
secbool r = test_btn_press(deadline, BTN_RIGHT);
if (r == sectrue) vcp_println("OK");
}
if (startswith(args, "BOTH ")) {
timeout = args[5] - '0';
uint32_t deadline = systick_ms() + timeout * 1000;
secbool r = test_btn_all(deadline);
if (r == sectrue) vcp_println("OK");
}
}
#endif
#ifdef USE_TOUCH
static secbool touch_click_timeout(uint32_t *touch, uint32_t timeout_ms) {
uint32_t deadline = systick_ms() + timeout_ms;
uint32_t r = 0;
while (touch_get_event())
;
while ((touch_get_event() & TOUCH_START) == 0) {
if (systick_ms() > deadline) return secfalse;
}
while (((r = touch_get_event()) & TOUCH_END) == 0) {
if (systick_ms() > deadline) return secfalse;
}
while (touch_get_event())
;
*touch = r;
return sectrue;
}
static void test_touch(const char *args) {
int column = args[0] - '0';
int timeout = args[1] - '0';
const int width = DISPLAY_RESX / 2;
const int height = DISPLAY_RESY / 2;
gfx_clear();
switch (column) {
case 1:
gfx_draw_bar(gfx_rect_wh(0, 0, width, height), COLOR_WHITE);
break;
case 2:
gfx_draw_bar(gfx_rect_wh(width, 0, width, height), COLOR_WHITE);
break;
case 3:
gfx_draw_bar(gfx_rect_wh(width, height, width, height), COLOR_WHITE);
break;
default:
gfx_draw_bar(gfx_rect_wh(0, height, width, height), COLOR_WHITE);
break;
}
display_refresh();
touch_init();
uint32_t evt = 0;
if (touch_click_timeout(&evt, timeout * 1000)) {
uint16_t x = touch_unpack_x(evt);
uint16_t y = touch_unpack_y(evt);
vcp_println("OK %d %d", x, y);
} else {
vcp_println("ERROR TIMEOUT");
}
gfx_clear();
display_refresh();
touch_deinit();
}
static void test_touch_custom(const char *args) {
static const int expected_params = 5;
int params[expected_params];
int num_params = 0;
extract_params(args, params, &num_params, expected_params);
if (num_params != expected_params) {
vcp_println("ERROR PARAM");
return;
}
#undef NUM_PARAMS
int x = params[0];
int y = params[1];
int width = params[2];
int height = params[3];
int timeout = params[4];
uint32_t ticks_start = hal_ticks_ms();
gfx_clear();
gfx_draw_bar(gfx_rect_wh(x, y, width, height), COLOR_WHITE);
display_refresh();
touch_init();
while (true) {
if (hal_ticks_ms() - ticks_start > timeout * 1000) {
vcp_println("ERROR TIMEOUT");
break;
}
uint32_t touch_event = touch_get_event();
if (touch_event != 0) {
uint16_t touch_x = touch_unpack_x(touch_event);
uint16_t touch_y = touch_unpack_y(touch_event);
if (touch_event & TOUCH_START) {
vcp_println("TOUCH D %d %d %d", touch_x, touch_y, hal_ticks_ms());
}
if (touch_event & TOUCH_MOVE) {
vcp_println("TOUCH C %d %d %d", touch_x, touch_y, hal_ticks_ms());
}
if (touch_event & TOUCH_END) {
vcp_println("TOUCH U %d %d %d", touch_x, touch_y, hal_ticks_ms());
vcp_println("OK");
break;
}
}
}
gfx_clear();
display_refresh();
touch_deinit();
}
static void test_touch_idle(const char *args) {
static const int expected_params = 1;
int num_params = 0;
int params[expected_params];
extract_params(args, params, &num_params, expected_params);
if (num_params != expected_params) {
vcp_println("ERROR PARAM");
return;
}
int timeout = params[0];
uint32_t ticks_start = hal_ticks_ms();
gfx_clear();
gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2);
gfx_draw_text(pos, "DON'T TOUCH", -1, &bold, GFX_ALIGN_CENTER);
display_refresh();
touch_init();
while (true) {
if (hal_ticks_ms() - ticks_start > timeout * 1000) {
vcp_println("OK");
break;
}
if (touch_activity() == sectrue) {
vcp_println("ERROR TOUCH DETECTED");
break;
}
}
gfx_clear();
display_refresh();
touch_deinit();
}
static void test_touch_power(const char *args) {
static const int expected_params = 1;
int num_params = 0;
int params[expected_params];
extract_params(args, params, &num_params, expected_params);
if (num_params != expected_params) {
vcp_println("ERROR PARAM");
return;
}
int timeout = params[0];
gfx_clear();
gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2);
gfx_draw_text(pos, "MEASURING", -1, &bold, GFX_ALIGN_CENTER);
display_refresh();
touch_power_set(true);
systick_delay_ms(timeout);
vcp_println("OK");
touch_power_set(false);
gfx_clear();
display_refresh();
}
static void test_sensitivity(const char *args) {
int v = atoi(args);
touch_init();
touch_set_sensitivity(v & 0xFF);
gfx_clear();
display_refresh();
for (;;) {
uint32_t evt = touch_get_event();
if (evt & TOUCH_START || evt & TOUCH_MOVE) {
int x = touch_unpack_x(evt);
int y = touch_unpack_y(evt);
gfx_clear();
gfx_draw_bar(gfx_rect_wh(x - 48, y - 48, 96, 96), COLOR_WHITE);
display_refresh();
} else if (evt & TOUCH_END) {
gfx_clear();
display_refresh();
}
}
touch_deinit();
}
static void touch_version(void) {
touch_init();
uint8_t version = touch_get_version();
vcp_println("OK %d", version);
touch_deinit();
}
#endif
static void test_pwm(const char *args) {
int v = atoi(args);
display_set_backlight(v);
display_refresh();
vcp_println("OK");
}
#ifdef USE_SD_CARD
static void test_sd(void) {
#define BLOCK_SIZE (32 * 1024)
static uint32_t buf1[BLOCK_SIZE / sizeof(uint32_t)];
static uint32_t buf2[BLOCK_SIZE / sizeof(uint32_t)];
bool low_speed = false;
#ifndef TREZOR_MODEL_T3T1
if (sectrue != sdcard_is_present()) {
vcp_println("ERROR NOCARD");
return;
}
#else
low_speed = true;
#endif
if (sectrue != sdcard_power_on_unchecked(low_speed)) {
vcp_println("ERROR POWER ON");
return;
}
if (sectrue != sdcard_read_blocks(buf1, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) {
vcp_println("ERROR sdcard_read_blocks (0)");
goto power_off;
}
for (int j = 1; j <= 2; j++) {
for (int i = 0; i < BLOCK_SIZE / sizeof(uint32_t); i++) {
buf1[i] ^= 0xFFFFFFFF;
}
if (sectrue !=
sdcard_write_blocks(buf1, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) {
vcp_println("ERROR sdcard_write_blocks (%d)", j);
goto power_off;
}
systick_delay_ms(1000);
if (sectrue !=
sdcard_read_blocks(buf2, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) {
vcp_println("ERROR sdcard_read_blocks (%d)", j);
goto power_off;
}
if (0 != memcmp(buf1, buf2, sizeof(buf1))) {
vcp_println("ERROR DATA MISMATCH");
goto power_off;
}
}
vcp_println("OK");
power_off:
sdcard_power_off();
}
#endif
static void test_firmware_version(void) {
vcp_println("OK %d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH);
}
static uint32_t read_bootloader_version(void) {
uint32_t version = 0;
mpu_mode_t mpu_mode = mpu_reconfig(MPU_MODE_BOOTUPDATE);
const image_header *header =
read_image_header((const uint8_t *)BOOTLOADER_START,
BOOTLOADER_IMAGE_MAGIC, BOOTLOADER_MAXSIZE);
if (header != NULL) {
version = header->version;
}
mpu_restore(mpu_mode);
return version;
}
static void test_bootloader_version(uint32_t version) {
vcp_println("OK %d.%d.%d", version & 0xFF, (version >> 8) & 0xFF,
(version >> 16) & 0xFF);
}
static const boardloader_version_t *read_boardloader_version(void) {
parse_boardloader_capabilities();
return get_boardloader_version();
}
static void test_boardloader_version(const boardloader_version_t *version) {
vcp_println("OK %d.%d.%d", version->version_major, version->version_minor,
version->version_patch);
}
static void test_wipe(void) {
firmware_invalidate_header();
gfx_clear();
gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2 + 10);
gfx_draw_text(pos, "WIPED", -1, &bold, GFX_ALIGN_CENTER);
display_refresh();
vcp_println("OK");
}
#ifdef USE_SBU
static void test_sbu(const char *args) {
secbool sbu1 = sectrue * (args[0] == '1');
secbool sbu2 = sectrue * (args[1] == '1');
sbu_set(sbu1, sbu2);
vcp_println("OK");
}
#endif
#ifdef USE_HAPTIC
static void test_haptic(const char *args) {
int duration_ms = atoi(args);
if (duration_ms <= 0) {
vcp_println("ERROR HAPTIC DURATION");
return;
}
if (haptic_test(duration_ms)) {
vcp_println("OK");
} else {
vcp_println("ERROR HAPTIC");
}
}
#endif
static void test_otp_read(void) {
uint8_t data[FLASH_OTP_BLOCK_SIZE + 1];
memzero(data, sizeof(data));
ensure(flash_otp_read(FLASH_OTP_BLOCK_BATCH, 0, data, FLASH_OTP_BLOCK_SIZE),
NULL);
// strip trailing 0xFF
for (size_t i = 0; i < sizeof(data); i++) {
if (data[i] == 0xFF) {
data[i] = 0x00;
break;
}
}
// use (null) for empty data
if (data[0] == 0x00) {
vcp_println("OK (null)");
} else {
vcp_println("OK %s", (const char *)data);
}
}
static void test_otp_write(const char *args) {
if (sectrue == flash_otp_is_locked(FLASH_OTP_BLOCK_BATCH)) {
vcp_println("ERROR ALREADY WRITTEN");
return;
}
char data[FLASH_OTP_BLOCK_SIZE];
memzero(data, sizeof(data));
strncpy(data, args, sizeof(data) - 1);
ensure(flash_otp_write(FLASH_OTP_BLOCK_BATCH, 0, (const uint8_t *)data,
sizeof(data)),
NULL);
ensure(flash_otp_lock(FLASH_OTP_BLOCK_BATCH), NULL);
vcp_println("OK");
}
static void test_otp_read_device_variant() {
uint8_t data[FLASH_OTP_BLOCK_SIZE] = {0};
if (sectrue !=
flash_otp_read(FLASH_OTP_BLOCK_DEVICE_VARIANT, 0, data, sizeof(data))) {
vcp_println("ERROR");
return;
}
vcp_print("OK ");
for (int i = 0; i < sizeof(data); i++) {
vcp_print("%d ", data[i]);
}
vcp_println("");
}
static void test_otp_write_device_variant(const char *args) {
#ifdef USE_OPTIGA
optiga_locked_status status = get_optiga_locked_status();
if (status == OPTIGA_LOCKED_FALSE) {
vcp_println("ERROR NOT LOCKED");
return;
}
if (status != OPTIGA_LOCKED_TRUE) {
// Error reported by get_optiga_locked_status().
return;
}
#endif
if (sectrue == flash_otp_is_locked(FLASH_OTP_BLOCK_DEVICE_VARIANT)) {
vcp_println("ERROR ALREADY WRITTEN");
return;
}
volatile char data[FLASH_OTP_BLOCK_SIZE];
memzero((char *)data, sizeof(data));
data[0] = 1;
int arg_start = 0;
int arg_num = 1;
int arg_len = 0;
int n = 0;
while (args[n] != 0) {
if (args[n] == ' ') {
if (arg_len != 0) {
if (arg_num < sizeof(data)) {
data[arg_num] = (uint8_t)atoi(&args[arg_start]);
}
arg_num++;
}
arg_start = n + 1;
arg_len = 0;
} else {
arg_len++;
}
n++;
}
if (arg_len != 0 && arg_num < sizeof(data)) {
data[arg_num] = (uint8_t)atoi(&args[arg_start]);
}
ensure(flash_otp_write(FLASH_OTP_BLOCK_DEVICE_VARIANT, 0,
(const uint8_t *)data, sizeof(data)),
NULL);
ensure(flash_otp_lock(FLASH_OTP_BLOCK_DEVICE_VARIANT), NULL);
vcp_println("OK");
}
static void test_reboot(void) { reboot_device(); }
void cpuid_read(void) {
mpu_mode_t mpu_mode = mpu_reconfig(MPU_MODE_OTP);
uint32_t cpuid[3];
cpuid[0] = LL_GetUID_Word0();
cpuid[1] = LL_GetUID_Word1();
cpuid[2] = LL_GetUID_Word2();
mpu_restore(mpu_mode);
vcp_print("OK ");
vcp_println_hex((uint8_t *)cpuid, sizeof(cpuid));
}
#ifdef USE_POWERCTL
void test_pmic(const char *args) {
if (strcmp(args, "INIT") == 0) {
npm1300_deinit();
bool ok = npm1300_init();
if (ok) {
vcp_println("OK");
} else {
vcp_println("ERROR # I/O error");
}
} else if (strcmp(args, "CHGSTART") == 0) {
bool ok = npm1300_set_charging(true);
if (ok) {
vcp_println("OK # Charging started with %dmA current limit",
npm1300_get_charging_limit());
} else {
vcp_println("ERROR");
}
} else if (strcmp(args, "CHGSTOP") == 0) {
bool ok = npm1300_set_charging(false);
if (ok) {
vcp_println("OK # Charging stopped");
} else {
vcp_println("ERROR # I/O error");
}
} else if (strncmp(args, "CHGLIMIT", 8) == 0) {
int i_charge = atoi(&args[8]);
if (i_charge < NPM1300_CHARGING_LIMIT_MIN ||
i_charge > NPM1300_CHARGING_LIMIT_MAX) {
vcp_println("ERROR # Out of range");
return;
} else {
bool ok = npm1300_set_charging_limit(i_charge);
if (ok) {
vcp_println("OK # %dmA current limit", npm1300_get_charging_limit());
} else {
vcp_println("ERROR # I/O error");
}
}
} else if (strcmp(args, "BUCK PWM") == 0) {
bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_PWM);
if (ok) {
vcp_println("OK # PWM mode set");
} else {
vcp_println("ERROR # I/O error");
}
} else if (strcmp(args, "BUCK PFM") == 0) {
bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_PFM);
if (ok) {
vcp_println("OK # PFM mode set");
} else {
vcp_println("ERROR # I/O error");
}
} else if (strcmp(args, "BUCK AUTO") == 0) {
bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_AUTO);
if (ok) {
vcp_println("OK # AUTO mode set");
} else {
vcp_println("ERROR # I/O error");
}
} else if (strncmp(args, "MEASURE", 7) == 0) {
int seconds = atoi(&args[7]);
uint32_t ticks = hal_ticks_ms();
vcp_println(
"time; vbat; ibat; ntc_temp; vsys; die_temp; iba_meas_status; "
"buck_status; mode");
do {
npm1300_report_t report;
bool ok = npm1300_measure_sync(&report);
if (!ok) {
vcp_println("ERROR # I/O error");
break;
}
vcp_print("%09d; ", ticks);
vcp_print("%d.%03d; ", (int)report.vbat,
(int)(report.vbat * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.ibat,
(int)abs(report.ibat * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.ntc_temp,
(int)abs(report.ntc_temp * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.vsys,
(int)(report.vsys * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.die_temp,
(int)abs(report.die_temp * 1000) % 1000);
vcp_print("%02X; ", report.ibat_meas_status);
vcp_print("%02X; ", report.buck_status);
bool ibat_discharging = ((report.ibat_meas_status >> 2) & 0x03) == 1;
bool ibat_charging = ((report.ibat_meas_status >> 2) & 0x03) == 3;
if (ibat_discharging) {
vcp_print("DISCHARGING");
} else if (ibat_charging) {
vcp_print("CHARGING");
} else {
vcp_print("IDLE");
}
vcp_println("");
while (!ticks_expired(ticks + 1000)) {
};
ticks += 1000;
} while (seconds-- > 0);
vcp_println("OK # Measurement finished");
}
}
#endif // USE_POWERCTL
#ifdef USE_POWERCTL
void test_wpc(const char *args) {
stwlc38_init();
if (strcmp(args, "UPDATE") == 0) {
vcp_println("Trying to update STWLC38 ... ");
uint32_t update_time_ms = systick_ms();
bool status = stwlc38_patch_and_config();
update_time_ms = systick_ms() - update_time_ms;
if (status == false) {
vcp_println("ERROR # Some problem occured");
} else {
vcp_println("WPC update completed {%d ms}", update_time_ms);
vcp_println("OK");
}
} else if (strcmp(args, "CHIP_INFO") == 0) {
stwlc38_chip_info_t chip_info;
if (!stwlc38_read_chip_info(&chip_info)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
}
vcp_println("chip_id 0x%d", chip_info.chip_id);
vcp_println("chip_rev 0x%d ", chip_info.chip_rev);
vcp_println("cust_id 0x%d ", chip_info.cust_id);
vcp_println("rom_id 0x%X ", chip_info.rom_id);
vcp_println("patch_id 0x%X ", chip_info.patch_id);
vcp_println("cfg_id 0x%X ", chip_info.cfg_id);
vcp_println("pe_id 0x%X ", chip_info.pe_id);
vcp_println("op_mode 0x%X ", chip_info.op_mode);
vcp_print("device_id : ");
for (uint8_t i = 0; i < sizeof(chip_info.device_id); i++) {
vcp_print("%x", chip_info.device_id[i]);
}
vcp_println("");
vcp_println("sys_err 0x%X ", chip_info.sys_err);
vcp_println(" - core_hard_fault: 0x%X ", chip_info.core_hard_fault);
vcp_println(" - nvm_ip_err: 0x%X ", chip_info.nvm_ip_err);
vcp_println(" - nvm_boot_err: 0x%X ", chip_info.nvm_boot_err);
vcp_println(" - nvm_pe_error: 0x%X ", chip_info.nvm_pe_error);
vcp_println(" - nvm_config_err: 0x%X ", chip_info.nvm_config_err);
vcp_println(" - nvm_patch_err: 0x%X ", chip_info.nvm_patch_err);
vcp_println(" - nvm_prod_info_err: 0x%X ", chip_info.nvm_prod_info_err);
vcp_println("OK");
} else if (strcmp(args, "EN") == 0) {
if (!stwlc38_enable(true)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
}
vcp_println("OK");
} else if (strcmp(args, "DIS") == 0) {
if (!stwlc38_enable(false)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
}
vcp_println("OK");
} else if (strcmp(args, "VEN") == 0) {
if (!stwlc38_enable_vout(true)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
}
vcp_println("OK");
} else if (strcmp(args, "VDIS") == 0) {
if (!stwlc38_enable_vout(false)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
}
vcp_println("OK");
} else if (strncmp(args, "MEASURE", 7) == 0) {
stwlc38_report_t report;
int seconds = atoi(&args[7]);
uint32_t ticks = hal_ticks_ms();
vcp_println(
"time; ready; vout_ready; vrect; vout; icur; tmeas; opfreq; ntc");
do {
if (!stwlc38_get_report(&report)) {
vcp_println("ERROR # STWLC38 not initialized");
return;
} else {
vcp_print("%09d; ", ticks);
vcp_print("%d; ", report.ready ? 1 : 0);
vcp_print("%d; ", report.vout_ready ? 1 : 0);
vcp_print("%d.%03d; ", (int)report.vrect,
(int)abs(report.vrect * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.vout,
(int)(report.vout * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.icur,
(int)abs(report.icur * 1000) % 1000);
vcp_print("%d.%03d; ", (int)report.tmeas,
(int)abs(report.tmeas * 1000) % 1000);
vcp_print("%d; ", report.opfreq);
vcp_print("%d.%03d; ", (int)report.ntc,
(int)abs(report.ntc * 1000) % 1000);
vcp_println("");
}
while (!ticks_expired(ticks + 1000)) {
};
ticks += 1000;
} while (seconds-- > 0);
vcp_println("OK # Measurement finished");
}
}
#endif // USE_POWERCTL
#ifdef USE_POWERCTL
void test_suspend(void) {
vcp_println("# Going to suspend mode (press power button to resume)");
systick_delay_ms(500);
powerctl_suspend();
systick_delay_ms(1500);
vcp_println("OK # Resumed");
}
#endif // USE_POWERCTL
#define BACKLIGHT_NORMAL 150
int main(void) {
system_init(&rsod_panic_handler);
#ifdef USE_POWERCTL
npm1300_init();
#endif
display_init(DISPLAY_JUMP_BEHAVIOR);
#ifdef USE_STORAGE_HWKEY
secure_aes_init();
#endif
#ifdef USE_HASH_PROCESSOR
hash_processor_init();
#endif
#ifdef USE_SD_CARD
sdcard_init();
#endif
#ifdef USE_BUTTON
button_init();
#endif
#ifdef USE_TOUCH
touch_init();
#endif
#ifdef USE_SBU
sbu_init();
#endif
#ifdef USE_HAPTIC
haptic_init();
#endif
usb_init_all();
uint32_t bootloader_version = read_bootloader_version();
const boardloader_version_t *boardloader_version = read_boardloader_version();
#ifdef USE_OPTIGA
optiga_init();
optiga_open_application();
pair_optiga();
#endif
gfx_clear();
draw_welcome_screen();
char dom[32];
// format: {MODEL_IDENTIFIER}-YYMMDD
if (sectrue == flash_otp_read(FLASH_OTP_BLOCK_BATCH, 0, (uint8_t *)dom, 32) &&
sectrue == startswith(dom, MODEL_IDENTIFIER) && dom[31] == 0) {
gfx_offset_t pos;
pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2);
gfx_draw_qrcode(pos, 4, dom);
pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY - 30);
gfx_draw_text(pos, dom + 8, -1, &bold, GFX_ALIGN_CENTER);
display_refresh();
}
display_fade(0, BACKLIGHT_NORMAL, 1000);
char line[2048]; // expecting hundreds of bytes represented as hexadecimal
// characters
for (;;) {
vcp_readline(line, sizeof(line));
if (startswith(line, "PING")) {
vcp_println("OK");
} else if (startswith(line, "CPUID READ")) {
cpuid_read();
} else if (startswith(line, "BORDER")) {
test_border();
} else if (startswith(line, "DISP ")) {
test_display(line + 5);
#ifdef USE_BUTTON
} else if (startswith(line, "BUTTON ")) {
test_button(line + 7);
#endif
#ifdef USE_TOUCH
} else if (startswith(line, "TOUCH VERSION")) {
touch_version();
} else if (startswith(line, "TOUCH ")) {
test_touch(line + 6);
} else if (startswith(line, "TOUCH_CUSTOM ")) {
test_touch_custom(line + 13);
} else if (startswith(line, "TOUCH_IDLE ")) {
test_touch_idle(line + 11);
} else if (startswith(line, "TOUCH_POWER ")) {
test_touch_power(line + 12);
} else if (startswith(line, "SENS ")) {
test_sensitivity(line + 5);
#endif
} else if (startswith(line, "PWM ")) {
test_pwm(line + 4);
#ifdef USE_SD_CARD
} else if (startswith(line, "SD")) {
test_sd();
#endif
#ifdef USE_SBU
} else if (startswith(line, "SBU ")) {
test_sbu(line + 4);
#endif
#ifdef USE_HAPTIC
} else if (startswith(line, "HAPTIC ")) {
test_haptic(line + 7);
#endif
#ifdef USE_OPTIGA
} else if (startswith(line, "OPTIGAID READ")) {
optigaid_read();
} else if (startswith(line, "CERTINF READ")) {
cert_read(OID_CERT_INF);
} else if (startswith(line, "CERTDEV WRITE ")) {
cert_write(OID_CERT_DEV, line + 14);
} else if (startswith(line, "CERTDEV READ")) {
cert_read(OID_CERT_DEV);
} else if (startswith(line, "CERTFIDO WRITE ")) {
cert_write(OID_CERT_FIDO, line + 15);
} else if (startswith(line, "CERTFIDO READ")) {
cert_read(OID_CERT_FIDO);
} else if (startswith(line, "KEYFIDO WRITE ")) {
keyfido_write(line + 14);
} else if (startswith(line, "KEYFIDO READ")) {
pubkey_read(OID_KEY_FIDO);
} else if (startswith(line, "LOCK")) {
optiga_lock();
} else if (startswith(line, "CHECK LOCKED")) {
check_locked();
} else if (startswith(line, "SEC READ")) {
sec_read();
#endif
} else if (startswith(line, "OTP READ")) {
test_otp_read();
} else if (startswith(line, "OTP WRITE ")) {
test_otp_write(line + 10);
} else if (startswith(line, "VARIANT READ")) {
test_otp_read_device_variant();
} else if (startswith(line, "VARIANT ")) {
test_otp_write_device_variant(line + 8);
} else if (startswith(line, "FIRMWARE VERSION")) {
test_firmware_version();
} else if (startswith(line, "BOOTLOADER VERSION")) {
test_bootloader_version(bootloader_version);
} else if (startswith(line, "BOARDLOADER VERSION")) {
test_boardloader_version(boardloader_version);
} else if (startswith(line, "WIPE")) {
test_wipe();
} else if (startswith(line, "REBOOT")) {
test_reboot();
#ifdef USE_POWERCTL
} else if (startswith(line, "PMIC ")) {
test_pmic(line + 5);
} else if (startswith(line, "WPC ")) {
test_wpc(line + 4);
} else if (startswith(line, "SUSPEND")) {
test_suspend();
#endif
} else {
vcp_println("UNKNOWN");
}
}
return 0;
}