1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-13 02:58:57 +00:00
trezor-firmware/tests/fido_tests/u2f-tests-hid/HIDTest.cc

688 lines
16 KiB
C++

// Copyright 2014 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Basic U2F HID framing compliance test.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <iostream>
#include <iomanip>
#include "u2f_util.h"
using namespace std;
int arg_Verbose = 0; // default
bool arg_Pause = false; // default
bool arg_Abort = true; // default
bool arg_Time = false; // default
float recvTimeout = 5.0;
static
void checkPause() {
if (arg_Pause) {
printf("\nPress any key to continue..");
getchar();
printf("\n");
}
}
static
void AbortOrNot() {
checkPause();
if (arg_Abort) exit(3);
cerr << "(continuing -a)" << endl;
}
struct U2Fob* device;
#define SEND(f) CHECK_EQ(0, U2Fob_sendHidFrame(device, &f))
#define RECV(f, t) CHECK_EQ(0, U2Fob_receiveHidFrame(device, &f, t))
// Initialize a frame with |len| random payload, or data.
void initFrame(U2FHID_FRAME* f, uint32_t cid, uint8_t cmd,
size_t len, const void* data = NULL) {
memset(f, 0, sizeof(U2FHID_FRAME));
f->cid = cid;
f->init.cmd = cmd | TYPE_INIT;
f->init.bcnth = (uint8_t) (len >> 8);
f->init.bcntl = (uint8_t) len;
for (size_t i = 0; i < min(len, sizeof(f->init.data)); ++i) {
f->init.data[i] = data ? ((const uint8_t*)data)[i] : (rand() & 255);
}
}
// Initialize a continue frame
void contFrame(U2FHID_FRAME* f, uint32_t cid, uint8_t seqno, uint8_t val) {
memset(f, val, sizeof(U2FHID_FRAME));
f->cid = cid;
f->cont.seq = seqno & ~TYPE_INIT;
}
// Return true if frame r is error frame for expected error.
bool isError(const U2FHID_FRAME r, int error) {
return
r.init.cmd == U2FHID_ERROR &&
MSG_LEN(r) == 1 &&
r.init.data[0] == error;
}
// Test basic INIT.
// Returns basic capabilities field.
uint8_t test_BasicInit() {
U2FHID_FRAME f, r;
initFrame(&f, U2Fob_getCid(device), U2FHID_INIT, INIT_NONCE_SIZE);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(r.init.cmd, U2FHID_INIT);
CHECK_EQ(MSG_LEN(r), sizeof(U2FHID_INIT_RESP));
CHECK_EQ(memcmp(&f.init.data[0], &r.init.data[0], INIT_NONCE_SIZE), 0);
CHECK_EQ(r.init.data[12], U2FHID_IF_VERSION);
return r.init.data[16];
}
// Test we have a working (single frame) echo.
void test_Echo() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 8);
U2Fob_deltaTime(&t);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
// Expect echo somewhat quickly.
if (arg_Time)
CHECK_LT(U2Fob_deltaTime(&t), .1);
// Check echoed content matches.
CHECK_EQ(U2FHID_PING, r.init.cmd);
CHECK_EQ(MSG_LEN(f), MSG_LEN(r));
CHECK_EQ(0, memcmp(f.init.data, r.init.data, MSG_LEN(f)));
}
// Test we can echo message larger than a single frame.
void test_LongEcho() {
const size_t TESTSIZE = 1024;
uint8_t challenge[TESTSIZE];
uint8_t response[TESTSIZE];
uint8_t cmd = U2FHID_PING;
for (size_t i = 0; i < sizeof(challenge); ++i) challenge[i] = rand();
uint64_t t = 0; U2Fob_deltaTime(&t);
CHECK_EQ(0, U2Fob_send(device, cmd, challenge, sizeof(challenge)));
float sent = U2Fob_deltaTime(&t);
CHECK_EQ(sizeof(response),
U2Fob_recv(device, &cmd, response, sizeof(response), 2.0));
float received = U2Fob_deltaTime(&t);
CHECK_EQ(cmd, U2FHID_PING);
CHECK_EQ(0, memcmp(challenge, response, sizeof(challenge)));
INFO << "sent: " << sent << ", received: " << received;
// Expected transfer times for 2ms bInterval.
// We do not want fobs to be too slow or too agressive.
if (device->dev != NULL && arg_Time) {
CHECK_GE(sent, .020);
CHECK_LE(sent, .075);
CHECK_GE(received, .020);
CHECK_LE(received, .075);
}
}
// Execute WINK, if implemented.
// Visually inspect fob for compliance.
void test_OptionalWink() {
U2FHID_FRAME f, r;
uint8_t caps = test_BasicInit();
initFrame(&f, U2Fob_getCid(device), U2FHID_WINK, 0);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (caps & CAPFLAG_WINK) {
CHECK_EQ(f.init.cmd, r.init.cmd);
CHECK_EQ(MSG_LEN(r), 0);
} else {
CHECK_EQ(isError(r, ERR_INVALID_CMD), true);
}
}
// Test max data size limit enforcement.
// We try echo 7610 bytes.
// Device should pre-empt communications with error reply.
void test_Limits() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 7610);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_INVALID_LEN), true);
}
// Check there are no frames pending for this cid.
// Poll for a frame with short timeout.
// Make sure none got received and timeout time passed.
void test_Idle(float timeOut = .3) {
U2FHID_FRAME r;
uint64_t t = 0; U2Fob_deltaTime(&t);
U2Fob_deltaTime(&t);
CHECK_EQ(-ERR_MSG_TIMEOUT, U2Fob_receiveHidFrame(device, &r, timeOut));
CHECK_GE(U2Fob_deltaTime(&t), .2);
CHECK_LE(U2Fob_deltaTime(&t), .5);
}
// Check we get a timeout error frame if not sending TYPE_CONT frames
// for a message that spans multiple frames.
// Device should timeout at ~.5 seconds.
void test_Timeout() {
U2FHID_FRAME f, r;
float measuredTimeout;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99);
U2Fob_deltaTime(&t);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_MSG_TIMEOUT), true);
measuredTimeout = U2Fob_deltaTime(&t);
INFO << "measured timeout: " << measuredTimeout;
CHECK_GE(measuredTimeout, .4); // needs to be at least 0.4 seconds
if (arg_Time)
CHECK_LE(measuredTimeout, 1.0); // but at most 1.0 seconds
}
// Test LOCK functionality, if implemented.
void test_Lock() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
uint8_t caps = test_BasicInit();
// Check whether lock is supported using an unlock command.
initFrame(&f, U2Fob_getCid(device), U2FHID_LOCK, 1, "\x00");
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (!(caps & CAPFLAG_LOCK)) {
// Make sure CAPFLAG reflects behavior.
CHECK_EQ(isError(r, ERR_INVALID_CMD), true);
return;
}
// Lock channel for 3 seconds.
initFrame(&f, U2Fob_getCid(device), U2FHID_LOCK, 1, "\x03");
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(f.init.cmd, r.init.cmd);
CHECK_EQ(0, MSG_LEN(r));
// Rattle lock, checking for BUSY.
int count = 0;
do {
// The requested channel timeout (3 seconds) resets
// after every message, so we only send a couple of
// messages down the channel in this loop. Otherwise
// the lock would never expire.
if (++count < 2) test_Echo();
usleep(100000);
initFrame(&f, U2Fob_getCid(device) ^ 1, U2FHID_PING, 1);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (r.init.cmd == U2FHID_ERROR) {
// We only expect BUSY here.
CHECK_EQ(isError(r, ERR_CHANNEL_BUSY), true);
}
} while (r.init.cmd == U2FHID_ERROR);
CHECK_GE(U2Fob_deltaTime(&t), 2.5);
}
// Check we get abort if we send TYPE_INIT when TYPE_CONT is expected.
void test_NotCont() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99); // Note 99 > frame.
SEND(f);
SEND(f); // Send frame again, i.e. another TYPE_INIT frame.
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (arg_Time)
CHECK_LT(U2Fob_deltaTime(&t), .1); // Expect fail reply quickly.
CHECK_EQ(isError(r, ERR_INVALID_SEQ), true);
// Check there are no further messages.
CHECK_EQ(-ERR_MSG_TIMEOUT, U2Fob_receiveHidFrame(device, &r, 0.6f));
}
// Check we get a error when sending wrong sequence in continuation frame.
void test_WrongSeq() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99);
SEND(f);
f.cont.seq = 1 | TYPE_CONT; // Send wrong SEQ, 0 is expected.
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (arg_Time)
CHECK_LT(U2Fob_deltaTime(&t), .1); // Expect fail reply quickly.
CHECK_EQ(isError(r, ERR_INVALID_SEQ), true);
// Check there are no further messages.
CHECK_EQ(-ERR_MSG_TIMEOUT, U2Fob_receiveHidFrame(device, &r, 0.6f));
}
// Check we hear nothing if we send a random CONT frame.
void test_NotFirst() {
U2FHID_FRAME f, r;
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 8);
f.cont.seq = 0 | TYPE_CONT; // Make continuation packet.
SEND(f);
CHECK_EQ(-ERR_MSG_TIMEOUT, U2Fob_receiveHidFrame(device, &r, 1.0));
}
// Check we get a BUSY if device is waiting for CONT on other channel.
void test_Busy() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99);
SEND(f);
f.cid ^= 1; // Flip channel.
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (arg_Time)
CHECK_LT(U2Fob_deltaTime(&t), .1); // Expect busy reply quickly.
CHECK_EQ(isError(r, ERR_CHANNEL_BUSY), true);
f.cid ^= 1; // Flip back.
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_MSG_TIMEOUT), true);
CHECK_GE(U2Fob_deltaTime(&t), .45); // Expect T/O msg only after timeout.
}
// Check that fob ignores CONT frame for different cid.
void test_Interleave() {
U2FHID_FRAME f, r;
uint64_t t = 0; U2Fob_deltaTime(&t);
uint32_t cid0 = U2Fob_getCid(device);
uint32_t cid1 = U2Fob_getCid(device) ^ 1;
uint8_t expected;
// Start a 2 frame request on cid 0
initFrame(&f, cid0, U2FHID_PING, sizeof(f.cont.data) + sizeof(f.init.data));
expected = f.init.data[0];
SEND(f);
// Interleave a 2 frame request on cid 1
initFrame(&f, cid1, U2FHID_PING, sizeof(f.cont.data) + sizeof(f.init.data));
SEND(f);
contFrame(&f, cid1, 0, expected ^ 1);
SEND(f);
// Then send 2nd frame on cid 0
contFrame(&f, cid0, 0, expected);
SEND(f);
// Expect CHANNEL_BUSY for cid 1
RECV(r, recvTimeout);
CHECK_EQ(r.cid, cid1);
CHECK_EQ(isError(r, ERR_CHANNEL_BUSY), true);
// Expect correct 2 frame reply for cid 0
RECV(r, recvTimeout);
CHECK_EQ(r.cid, cid0);
CHECK_EQ(r.init.data[0], expected);
RECV(r, recvTimeout);
CHECK_EQ(r.cid, cid0);
CHECK_EQ(r.cont.data[1], expected);
// Expect nothing left to receive
CHECK_EQ(-ERR_MSG_TIMEOUT, U2Fob_receiveHidFrame(device, &r, .5));
}
// Test INIT self aborts wait for CONT frame
void test_InitSelfAborts() {
U2FHID_FRAME f, r;
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99);
SEND(f);
initFrame(&f, U2Fob_getCid(device), U2FHID_INIT, INIT_NONCE_SIZE);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(r.init.cmd, U2FHID_INIT);
CHECK_GE(MSG_LEN(r), MSG_LEN(f));
CHECK_EQ(memcmp(&f.init.data[0], &r.init.data[0], INIT_NONCE_SIZE), 0);
test_NotFirst();
}
// Test INIT other does not abort wait for CONT.
void test_InitOther() {
U2FHID_FRAME f, f2, r;
initFrame(&f, U2Fob_getCid(device), U2FHID_PING, 99);
SEND(f);
initFrame(&f2, U2Fob_getCid(device) ^ 1, U2FHID_INIT, INIT_NONCE_SIZE);
SEND(f2);
RECV(r, recvTimeout);
CHECK_EQ(f2.cid, r.cid);
// Expect sync reply for requester
CHECK_EQ(r.init.cmd, U2FHID_INIT);
CHECK_GE(MSG_LEN(r), MSG_LEN(f2));
CHECK_EQ(memcmp(&f2.init.data[0], &r.init.data[0], INIT_NONCE_SIZE), 0);
// Expect error frame after timeout on first channel.
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_MSG_TIMEOUT), true);
}
void wait_Idle() {
U2FHID_FRAME r;
while (-ERR_MSG_TIMEOUT != U2Fob_receiveHidFrame(device, &r, .2f)) {
}
}
void test_LeadingZero() {
U2FHID_FRAME f, r;
initFrame(&f, 0x100, U2FHID_PING, 10);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(r.cid, f.cid);
CHECK_EQ(r.init.cmd, U2FHID_PING);
CHECK_EQ(MSG_LEN(f), MSG_LEN(r));
}
void test_InitOnNonBroadcastEchoesCID() {
U2FHID_FRAME f, r;
size_t cs = INIT_NONCE_SIZE;
initFrame(&f, 0xdeadbeef, U2FHID_INIT, cs); // Use non-broadcast cid
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(r.cid, f.cid);
CHECK_EQ(r.init.cmd, U2FHID_INIT);
CHECK_EQ(MSG_LEN(r), sizeof(U2FHID_INIT_RESP));
CHECK_EQ(0, memcmp(f.init.data, r.init.data, cs));
uint32_t cid =
(r.init.data[cs + 0] << 24) |
(r.init.data[cs + 1] << 16) |
(r.init.data[cs + 2] << 8) |
(r.init.data[cs + 3] << 0);
CHECK_EQ(cid, 0xdeadbeef);
}
uint32_t test_Init(bool check = true) {
U2FHID_FRAME f, r;
size_t cs = INIT_NONCE_SIZE;
initFrame(&f, -1, U2FHID_INIT, cs); // -1 is broadcast channel
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(r.cid, f.cid);
// expect init reply
CHECK_EQ(r.init.cmd, U2FHID_INIT);
CHECK_EQ(MSG_LEN(r), sizeof(U2FHID_INIT_RESP));
// Check echo of challenge
CHECK_EQ(0, memcmp(f.init.data, r.init.data, cs));
uint32_t cid =
(r.init.data[cs + 0] << 0) |
(r.init.data[cs + 1] << 8) |
(r.init.data[cs + 2] << 16) |
(r.init.data[cs + 3] << 24);
if (check) {
// Check that another INIT yields a distinct cid.
CHECK_NE(test_Init(false), cid);
}
return cid;
}
void test_InitUnderLock() {
U2FHID_FRAME f, r;
uint8_t caps = test_BasicInit();
// Check whether lock is supported, using an unlock command.
initFrame(&f, U2Fob_getCid(device), U2FHID_LOCK, 1, "\x00"); // unlock
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
if (!(caps & CAPFLAG_LOCK)) {
// Make sure CAPFLAG reflects behavior.
CHECK_EQ(isError(r, ERR_INVALID_CMD), true);
return;
}
initFrame(&f, U2Fob_getCid(device), U2FHID_LOCK, 1, "\x03"); // 3 seconds
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(f.init.cmd, r.init.cmd);
CHECK_EQ(0, MSG_LEN(r));
// We have a lock. CMD_INIT should work whilst another holds lock.
test_Init(false);
test_InitOnNonBroadcastEchoesCID();
// Unlock.
initFrame(&f, U2Fob_getCid(device), U2FHID_LOCK, 1, "\x00");
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(f.init.cmd, r.init.cmd);
CHECK_EQ(0, MSG_LEN(r));
}
void test_Unknown(uint8_t cmd) {
U2FHID_FRAME f, r;
initFrame(&f, U2Fob_getCid(device), cmd, 0);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_INVALID_CMD), true);
}
void test_OnlyInitOnBroadcast() {
U2FHID_FRAME f, r;
initFrame(&f, -1, U2FHID_PING, INIT_NONCE_SIZE);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_INVALID_CID), true);
}
void test_NothingOnChannel0() {
U2FHID_FRAME f, r;
initFrame(&f, 0, U2FHID_INIT, INIT_NONCE_SIZE);
SEND(f);
RECV(r, recvTimeout);
CHECK_EQ(f.cid, r.cid);
CHECK_EQ(isError(r, ERR_INVALID_CID), true);
}
int main(int argc, char* argv[]) {
if (argc < 2) {
cerr << "Usage: " << argv[0]
<< " <device-path> [-a] [-v] [-V] [-p] [-t]" << endl;
return -1;
}
device = U2Fob_create();
char* arg_DeviceName = argv[1];
while (--argc > 1) {
if (!strncmp(argv[argc], "-v", 2)) {
// INFO only
arg_Verbose |= 1;
}
if (!strncmp(argv[argc], "-V", 2)) {
// All logging
arg_Verbose |= 2;
U2Fob_setLog(device, stdout, -1);
}
if (!strncmp(argv[argc], "-a", 2)) {
// Don't abort, try continue;
arg_Abort = false;
}
if (!strncmp(argv[argc], "-p", 2)) {
// Pause at abort
arg_Pause = true;
}
if (!strncmp(argv[argc], "-t", 2)) {
// Strict timing checks
arg_Time = true;
recvTimeout = 1.0;
}
}
srand((unsigned int) time(NULL));
// Start of tests
//
CHECK_EQ(U2Fob_open(device, arg_DeviceName), 0);
PASS(test_Idle());
PASS(test_Init());
// Now that we have INIT, get a proper cid for device.
CHECK_EQ(U2Fob_init(device), 0);
PASS(test_BasicInit());
PASS(test_Unknown(U2FHID_SYNC));
PASS(test_InitOnNonBroadcastEchoesCID());
PASS(test_InitUnderLock());
PASS(test_InitSelfAborts());
PASS(test_InitOther());
PASS(test_OptionalWink());
PASS(test_Lock());
PASS(test_Echo());
PASS(test_LongEcho());
PASS(test_Timeout());
PASS(test_WrongSeq());
PASS(test_NotCont());
PASS(test_NotFirst());
PASS(test_Limits());
PASS(test_Busy());
PASS(test_Interleave());
PASS(test_LeadingZero());
PASS(test_Idle(2.0));
PASS(test_NothingOnChannel0());
PASS(test_OnlyInitOnBroadcast());
U2Fob_destroy(device);
return 0;
}