mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-11-18 13:38:12 +00:00
743 lines
18 KiB
C
743 lines
18 KiB
C
/**
|
|
* Copyright (c) 2013 Tomas Dzetkulic
|
|
* Copyright (c) 2013 Pavol Rusnak
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "rand.h"
|
|
#include "sha2.h"
|
|
#include "hmac.h"
|
|
#include "ecdsa.h"
|
|
#include "aux.h"
|
|
|
|
#define INVERSE_FAST 1
|
|
|
|
// assumes x < 2*prime
|
|
void mod(bignum256 *x, bignum256 const *prime)
|
|
{
|
|
int i = 8;
|
|
uint32_t temp;
|
|
// compare numbers
|
|
while (i >= 0 && prime->val[i] == x->val[i]) i--;
|
|
// if equal
|
|
if (i == -1) {
|
|
// set x to zero
|
|
for (i = 0; i < 9; i++) {
|
|
x->val[i] = 0;
|
|
}
|
|
} else {
|
|
// if x is greater
|
|
if (x->val[i] > prime->val[i]) {
|
|
// substract p from x
|
|
temp = 0x40000000u;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += x->val[i] - prime->val[i];
|
|
x->val[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
temp += 0x3FFFFFFFu;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// x = k * x
|
|
// both inputs and result may be bigger than prime but not bigger than 2 * prime
|
|
void multiply(const bignum256 *k, bignum256 *x, bignum256 const *prime)
|
|
{
|
|
int i, j;
|
|
uint64_t temp = 0;
|
|
uint32_t res[18], coef;
|
|
|
|
// compute lower half of long multiplication
|
|
for (i = 0; i < 9; i++)
|
|
{
|
|
for (j = 0; j <= i; j++) {
|
|
temp += k->val[j] * (uint64_t)x->val[i - j];
|
|
}
|
|
res[i] = temp & 0x3FFFFFFFu;
|
|
temp >>= 30;
|
|
}
|
|
// compute upper half
|
|
for (; i < 17; i++)
|
|
{
|
|
for (j = i - 8; j < 9 ; j++) {
|
|
temp += k->val[j] * (uint64_t)x->val[i - j];
|
|
}
|
|
res[i] = temp & 0x3FFFFFFFu;
|
|
temp >>= 30;
|
|
}
|
|
res[17] = temp;
|
|
// compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime
|
|
for (i = 16; i >= 8; i--) {
|
|
// estimate (res / prime)
|
|
coef = (res[i] >> 16) + (res[i + 1] << 14);
|
|
// substract (coef * prime) from res
|
|
temp = 0x1000000000000000llu + res[i - 8] - prime->val[0] * (uint64_t)coef;
|
|
res[i - 8] = temp & 0x3FFFFFFF;
|
|
for (j = 1; j < 9; j++) {
|
|
temp >>= 30;
|
|
temp += 0xFFFFFFFC0000000llu + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
|
|
res[i - 8 + j] = temp & 0x3FFFFFFF;
|
|
}
|
|
}
|
|
// store the result
|
|
for (i = 0; i < 9; i++) {
|
|
x->val[i] = res[i];
|
|
}
|
|
}
|
|
|
|
void fast_mod(bignum256 *x, bignum256 const *prime)
|
|
{
|
|
int j;
|
|
uint32_t coef;
|
|
uint64_t temp;
|
|
|
|
coef = x->val[8] >> 16;
|
|
if (!coef) return;
|
|
// substract (coef * prime) from x
|
|
temp = 0x1000000000000000llu + x->val[0] - prime->val[0] * (uint64_t)coef;
|
|
x->val[0] = temp & 0x3FFFFFFF;
|
|
for (j = 1; j < 9; j++) {
|
|
temp >>= 30;
|
|
temp += 0xFFFFFFFC0000000llu + x->val[j] - prime->val[j] * (uint64_t)coef;
|
|
x->val[j] = temp & 0x3FFFFFFF;
|
|
}
|
|
}
|
|
|
|
#ifndef INVERSE_FAST
|
|
|
|
#ifdef USE_PRECOMPUTED_IV
|
|
#warning USE_PRECOMPUTED_IV will not be used, please undef
|
|
#endif
|
|
// in field G_prime, small but slow
|
|
void inverse(bignum256 *x, bignum256 const *prime)
|
|
{
|
|
uint32_t i, j, limb;
|
|
bignum256 res;
|
|
res.val[0] = 1;
|
|
for (i = 1; i < 9; i++) {
|
|
res.val[i] = 0;
|
|
}
|
|
for (i = 0; i < 9; i++) {
|
|
limb = prime->val[i];
|
|
// this is not enough in general but fine for secp256k1 because prime->val[0] > 1
|
|
if (i == 0) limb -= 2;
|
|
for (j = 0; j < 30; j++) {
|
|
if (i == 8 && limb == 0) break;
|
|
if (limb & 1) {
|
|
multiply(x, &res, prime);
|
|
}
|
|
limb >>= 1;
|
|
multiply(x, x, prime);
|
|
}
|
|
}
|
|
mod(&res, prime);
|
|
memcpy(x, &res, sizeof(bignum256));
|
|
}
|
|
|
|
#else
|
|
|
|
// in field G_prime, big but fast
|
|
void inverse(bignum256 *x, bignum256 const *prime)
|
|
{
|
|
int i, j, k, len1, len2, mask;
|
|
uint32_t u[9], v[9], s[10], r[10], temp, temp2;
|
|
fast_mod(x, prime);
|
|
mod(x, prime);
|
|
for (i = 0; i < 9; i++) {
|
|
u[i] = prime->val[i];
|
|
v[i] = x->val[i];
|
|
}
|
|
len1 = 9;
|
|
s[0] = 1;
|
|
r[0] = 0;
|
|
len2 = 1;
|
|
k = 0;
|
|
for (;;) {
|
|
for (i = 0; i < len1; i++) {
|
|
if (v[i]) break;
|
|
}
|
|
if (i == len1) break;
|
|
for (;;) {
|
|
for (i = 0; i < 30; i++) {
|
|
if (u[0] & (1 << i)) break;
|
|
}
|
|
if (i == 0) break;
|
|
mask = (1 << i) - 1;
|
|
for (j = 0; j + 1 < len1; j++) {
|
|
u[j] = (u[j] >> i) | ((u[j + 1] & mask) << (30 - i));
|
|
}
|
|
u[j] = (u[j] >> i);
|
|
mask = (1 << (30 - i)) - 1;
|
|
s[len2] = s[len2 - 1] >> (30 - i);
|
|
for (j = len2 - 1; j > 0; j--) {
|
|
s[j] = (s[j - 1] >> (30 - i)) | ((s[j] & mask) << i);
|
|
}
|
|
s[0] = (s[0] & mask) << i;
|
|
if (s[len2]) {
|
|
r[len2] = 0;
|
|
len2++;
|
|
}
|
|
k += i;
|
|
}
|
|
for (;;) {
|
|
for (i = 0; i < 30; i++) {
|
|
if (v[0] & (1 << i)) break;
|
|
}
|
|
if (i == 0) break;
|
|
mask = (1 << i) - 1;
|
|
for (j = 0; j + 1 < len1; j++) {
|
|
v[j] = (v[j] >> i) | ((v[j + 1] & mask) << (30 - i));
|
|
}
|
|
v[j] = (v[j] >> i);
|
|
mask = (1 << (30 - i)) - 1;
|
|
r[len2] = r[len2 - 1] >> (30 - i);
|
|
for (j = len2 - 1; j > 0; j--) {
|
|
r[j] = (r[j - 1] >> (30 - i)) | ((r[j] & mask) << i);
|
|
}
|
|
r[0] = (r[0] & mask) << i;
|
|
if (r[len2]) {
|
|
s[len2] = 0;
|
|
len2++;
|
|
}
|
|
k += i;
|
|
}
|
|
|
|
i = len1 - 1;
|
|
while (i > 0 && u[i] == v[i]) i--;
|
|
if (u[i] > v[i]) {
|
|
temp = 0x40000000u + u[0] - v[0];
|
|
u[0] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
for (i = 1; i < len1; i++) {
|
|
temp += 0x3FFFFFFFu + u[i] - v[i];
|
|
u[i - 1] += (temp & 1) << 29;
|
|
u[i] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
temp = temp2 = 0;
|
|
for (i = 0; i < len2; i++) {
|
|
temp += s[i] + r[i];
|
|
temp2 += s[i] << 1;
|
|
r[i] = temp & 0x3FFFFFFF;
|
|
s[i] = temp2 & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
temp2 >>= 30;
|
|
}
|
|
if (temp != 0 || temp2 != 0) {
|
|
r[len2] = temp;
|
|
s[len2] = temp2;
|
|
len2++;
|
|
}
|
|
} else {
|
|
temp = 0x40000000u + v[0] - u[0];
|
|
v[0] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
for (i = 1; i < len1; i++) {
|
|
temp += 0x3FFFFFFFu + v[i] - u[i];
|
|
v[i - 1] += (temp & 1) << 29;
|
|
v[i] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
temp = temp2 = 0;
|
|
for (i = 0; i < len2; i++) {
|
|
temp += s[i] + r[i];
|
|
temp2 += r[i] << 1;
|
|
s[i] = temp & 0x3FFFFFFF;
|
|
r[i] = temp2 & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
temp2 >>= 30;
|
|
}
|
|
if (temp != 0 || temp2 != 0) {
|
|
s[len2] = temp;
|
|
r[len2] = temp2;
|
|
len2++;
|
|
}
|
|
}
|
|
if (u[len1 - 1] == 0 && v[len1 - 1] == 0) len1--;
|
|
k++;
|
|
}
|
|
i = 8;
|
|
while (i > 0 && r[i] == prime->val[i]) i--;
|
|
if (r[i] >= prime->val[i]) {
|
|
temp = 1;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += 0x3FFFFFFF + r[i] - prime->val[i];
|
|
r[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
}
|
|
temp = 1;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += 0x3FFFFFFF + prime->val[i] - r[i];
|
|
r[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
int done = 0;
|
|
#ifdef USE_PRECOMPUTED_IV
|
|
if (prime == &prime256k1) {
|
|
for (j = 0; j < 9; j++) {
|
|
x->val[j] = r[j];
|
|
}
|
|
multiply(secp256k1_iv + k - 256, x, prime);
|
|
fast_mod(x, prime);
|
|
done = 1;
|
|
}
|
|
#endif
|
|
if (!done) {
|
|
for (j = 0; j < k; j++) {
|
|
if (r[0] & 1) {
|
|
temp = r[0] + prime->val[0];
|
|
r[0] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
for (i = 1; i < 9; i++) {
|
|
temp += r[i] + prime->val[i];
|
|
r[i - 1] += (temp & 1) << 29;
|
|
r[i] = (temp >> 1) & 0x1FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 8; i++) {
|
|
r[i] = (r[i] >> 1) | ((r[i + 1] & 1) << 29);
|
|
}
|
|
r[8] = r[8] >> 1;
|
|
}
|
|
}
|
|
for (j = 0; j < 9; j++) {
|
|
x->val[j] = r[j];
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// res = a - b
|
|
// b < 2*prime; result not normalized
|
|
void fast_substract(const bignum256 *a, const bignum256 *b, bignum256 *res)
|
|
{
|
|
int i;
|
|
uint32_t temp = 0;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += a->val[i] + 2u *prime256k1.val[i] - b->val[i];
|
|
res->val[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
}
|
|
|
|
// cp2 = cp1 + cp2
|
|
void point_add(const curve_point *cp1, curve_point *cp2)
|
|
{
|
|
int i;
|
|
uint32_t temp;
|
|
bignum256 lambda, inv, xr, yr;
|
|
fast_substract(&(cp2->x), &(cp1->x), &inv);
|
|
inverse(&inv, &prime256k1);
|
|
fast_substract(&(cp2->y), &(cp1->y), &lambda);
|
|
multiply(&inv, &lambda, &prime256k1);
|
|
memcpy(&xr, &lambda, sizeof(bignum256));
|
|
multiply(&xr, &xr, &prime256k1);
|
|
temp = 0;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += xr.val[i] + 3u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i];
|
|
xr.val[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
fast_mod(&xr, &prime256k1);
|
|
fast_substract(&(cp1->x), &xr, &yr);
|
|
// no need to fast_mod here
|
|
// fast_mod(&yr);
|
|
multiply(&lambda, &yr, &prime256k1);
|
|
fast_substract(&yr, &(cp1->y), &yr);
|
|
fast_mod(&yr, &prime256k1);
|
|
memcpy(&(cp2->x), &xr, sizeof(bignum256));
|
|
memcpy(&(cp2->y), &yr, sizeof(bignum256));
|
|
}
|
|
|
|
// cp = cp + cp
|
|
void point_double(curve_point *cp)
|
|
{
|
|
int i;
|
|
uint32_t temp;
|
|
bignum256 lambda, inverse_y, xr, yr;
|
|
memcpy(&inverse_y, &(cp->y), sizeof(bignum256));
|
|
inverse(&inverse_y, &prime256k1);
|
|
memcpy(&lambda, &three_over_two256k1, sizeof(bignum256));
|
|
multiply(&inverse_y, &lambda, &prime256k1);
|
|
multiply(&(cp->x), &lambda, &prime256k1);
|
|
multiply(&(cp->x), &lambda, &prime256k1);
|
|
memcpy(&xr, &lambda, sizeof(bignum256));
|
|
multiply(&xr, &xr, &prime256k1);
|
|
temp = 0;
|
|
for (i = 0; i < 9; i++) {
|
|
temp += xr.val[i] + 3u * prime256k1.val[i] - 2u * cp->x.val[i];
|
|
xr.val[i] = temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
fast_mod(&xr, &prime256k1);
|
|
fast_substract(&(cp->x), &xr, &yr);
|
|
// no need to fast_mod here
|
|
// fast_mod(&yr);
|
|
multiply(&lambda, &yr, &prime256k1);
|
|
fast_substract(&yr, &(cp->y), &yr);
|
|
fast_mod(&yr, &prime256k1);
|
|
memcpy(&(cp->x), &xr, sizeof(bignum256));
|
|
memcpy(&(cp->y), &yr, sizeof(bignum256));
|
|
}
|
|
|
|
// res = k * G
|
|
void scalar_multiply(bignum256 *k, curve_point *res)
|
|
{
|
|
int i, j;
|
|
// result is zero
|
|
int is_zero = 1;
|
|
#ifdef USE_PRECOMPUTED_CP
|
|
int exp = 0;
|
|
#else
|
|
curve_point curr;
|
|
// initial res
|
|
memcpy(&curr, &G256k1, sizeof(curve_point));
|
|
#endif
|
|
for (i = 0; i < 9; i++) {
|
|
for (j = 0; j < 30; j++) {
|
|
if (i == 8 && (k->val[i] >> j) == 0) break;
|
|
if (k->val[i] & (1u << j)) {
|
|
if (is_zero) {
|
|
#ifdef USE_PRECOMPUTED_CP
|
|
memcpy(res, secp256k1_cp + exp, sizeof(curve_point));
|
|
#else
|
|
memcpy(res, &curr, sizeof(curve_point));
|
|
#endif
|
|
is_zero = 0;
|
|
} else {
|
|
#ifdef USE_PRECOMPUTED_CP
|
|
point_add(secp256k1_cp + exp, res);
|
|
#else
|
|
point_add(&curr, res);
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef USE_PRECOMPUTED_CP
|
|
exp++;
|
|
#else
|
|
point_double(&curr);
|
|
#endif
|
|
}
|
|
}
|
|
mod(&(res->x), &prime256k1);
|
|
mod(&(res->y), &prime256k1);
|
|
}
|
|
|
|
// write DER encoding of number to buffer
|
|
void write_der(const bignum256 *x, uint8_t *buf)
|
|
{
|
|
int i, j = 8, k = 8, len = 0;
|
|
uint8_t r = 0, temp;
|
|
buf[0] = 2;
|
|
for (i = 0; i < 32; i++) {
|
|
temp = (x->val[j] >> k) + r;
|
|
k -= 8;
|
|
if (k < 0) {
|
|
r = (x->val[j]) << (-k);
|
|
k += 30;
|
|
j--;
|
|
} else {
|
|
r = 0;
|
|
}
|
|
if (len || temp) {
|
|
buf[2 + len] = temp;
|
|
len++;
|
|
}
|
|
}
|
|
buf[1] = len;
|
|
}
|
|
|
|
void read_32byte_big_endian(const uint8_t *in_number, bignum256 *out_number)
|
|
{
|
|
int i;
|
|
uint64_t temp = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
temp += (((uint64_t)read_be(in_number + (7 - i) * 4)) << (2 * i));
|
|
out_number->val[i]= temp & 0x3FFFFFFF;
|
|
temp >>= 30;
|
|
}
|
|
out_number->val[8] = temp;
|
|
}
|
|
|
|
void write_32byte_big_endian(const bignum256 *in_number, uint8_t *out_number)
|
|
{
|
|
int i, shift = 30 + 16 - 32;
|
|
uint64_t temp = in_number->val[8];
|
|
for (i = 0; i < 8; i++) {
|
|
temp <<= 30;
|
|
temp |= in_number->val[7 - i];
|
|
write_be(out_number + i * 4, temp >> shift);
|
|
shift -= 2;
|
|
}
|
|
}
|
|
|
|
int is_zero(const bignum256 *a)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 9; i++) {
|
|
if (a->val[i] != 0) return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int is_less(const bignum256 *a, const bignum256 *b)
|
|
{
|
|
int i;
|
|
for (i = 8; i >= 0; i--) {
|
|
if (a->val[i] < b->val[i]) return 1;
|
|
if (a->val[i] > b->val[i]) return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// generate random K for signing
|
|
void generate_k_random(bignum256 *k) {
|
|
int i;
|
|
for (;;) {
|
|
for (i = 0; i < 8; i++) {
|
|
k->val[i] = random32() & 0x3FFFFFFF;
|
|
}
|
|
k->val[8] = random32() & 0xFFFF;
|
|
// if k is too big or too small, we don't like it
|
|
if (k->val[5] == 0x3FFFFFFF && k->val[6] == 0x3FFFFFFF && k->val[7] == 0x3FFFFFFF && k->val[8] == 0xFFFF) continue;
|
|
if (k->val[5] == 0x0 && k->val[6] == 0x0 && k->val[7] == 0x0 && k->val[8] == 0x0) continue;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// generate K in a deterministic way, according to RFC6979
|
|
// http://tools.ietf.org/html/rfc6979
|
|
void generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash)
|
|
{
|
|
uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)], t[32];
|
|
bignum256 z1;
|
|
|
|
memcpy(bx, priv_key, 32);
|
|
read_32byte_big_endian(hash, &z1);
|
|
mod(&z1, &order256k1);
|
|
write_32byte_big_endian(&z1, bx + 32);
|
|
|
|
memset(v, 1, sizeof(v));
|
|
memset(k, 0, sizeof(k));
|
|
|
|
memcpy(buf, v, sizeof(v));
|
|
buf[sizeof(v)] = 0x00;
|
|
memcpy(buf + sizeof(v) + 1, bx, 64);
|
|
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
|
|
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
|
|
|
|
memcpy(buf, v, sizeof(v));
|
|
buf[sizeof(v)] = 0x01;
|
|
memcpy(buf + sizeof(v) + 1, bx, 64);
|
|
hmac_sha256(k, sizeof(k), buf, sizeof(buf), k);
|
|
hmac_sha256(k, sizeof(k), v, sizeof(k), v);
|
|
|
|
for (;;) {
|
|
hmac_sha256(k, sizeof(k), v, sizeof(v), t);
|
|
read_32byte_big_endian(t, secret);
|
|
if ( !is_zero(secret) && is_less(secret, &order256k1) ) {
|
|
return;
|
|
}
|
|
memcpy(buf, v, sizeof(v));
|
|
buf[sizeof(v)] = 0x00;
|
|
hmac_sha256(k, sizeof(k), buf, sizeof(v) + 1, k);
|
|
hmac_sha256(k, sizeof(k), v, sizeof(v), v);
|
|
}
|
|
}
|
|
|
|
// uses secp256k1 curve
|
|
// priv_key is a 32 byte big endian stored number
|
|
// msg is a data to be signed
|
|
// msg_len is the message length
|
|
// sig is at least 70 bytes long array for the signature
|
|
// sig_len is the pointer to a uint that will contain resulting signature length. note that ((*sig_len) == sig[1]+2)
|
|
void ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint32_t *sig_len)
|
|
{
|
|
int i;
|
|
uint8_t hash[32];
|
|
curve_point R;
|
|
bignum256 k, z;
|
|
bignum256 *da = &R.y;
|
|
// compute hash function of message
|
|
SHA256_Raw(msg, msg_len, hash);
|
|
// if double hash is required uncomment the following line:
|
|
// SHA256_Raw(hash, 32, hash);
|
|
|
|
read_32byte_big_endian(hash, &z);
|
|
for (;;) {
|
|
|
|
// generate random number k
|
|
//generate_k_random(&k);
|
|
|
|
// generate K deterministically
|
|
generate_k_rfc6979(&k, priv_key, hash);
|
|
|
|
// compute k*G
|
|
scalar_multiply(&k, &R);
|
|
// r = (rx mod n)
|
|
mod(&R.x, &order256k1);
|
|
// if r is zero, we try different k
|
|
for (i = 0; i < 9; i++) {
|
|
if (R.x.val[i] != 0) break;
|
|
}
|
|
if (i == 9) continue;
|
|
inverse(&k, &order256k1);
|
|
read_32byte_big_endian(priv_key, da);
|
|
multiply(&R.x, da, &order256k1);
|
|
for (i = 0; i < 8; i++) {
|
|
da->val[i] += z.val[i];
|
|
da->val[i + 1] += (da->val[i] >> 30);
|
|
da->val[i] &= 0x3FFFFFFF;
|
|
}
|
|
da->val[8] += z.val[8];
|
|
multiply(da, &k, &order256k1);
|
|
mod(&k, &order256k1);
|
|
for (i = 0; i < 9; i++) {
|
|
if (k.val[i] != 0) break;
|
|
}
|
|
if (i == 9) continue;
|
|
// we are done, R.x and k is the result signature
|
|
break;
|
|
}
|
|
write_der(&R.x, sig + 2);
|
|
i = sig[3] + 2;
|
|
write_der(&k, sig + 2 + i);
|
|
i += sig[3 + i] + 2;
|
|
sig[0] = 0x30;
|
|
sig[1] = i;
|
|
*sig_len = i + 2;
|
|
}
|
|
|
|
// uses secp256k1 curve
|
|
// priv_key is a 32 byte big endian stored number
|
|
// pub_key is at least 70 bytes long array for the public key
|
|
void ecdsa_get_public_key(const uint8_t *priv_key, uint8_t *pub_key, uint32_t *pub_key_len)
|
|
{
|
|
uint32_t i;
|
|
curve_point R;
|
|
bignum256 k;
|
|
|
|
read_32byte_big_endian(priv_key, &k);
|
|
// compute k*G
|
|
scalar_multiply(&k, &R);
|
|
write_der(&R.x, pub_key + 2);
|
|
i = pub_key[3] + 2;
|
|
write_der(&R.y, pub_key + 2 + i);
|
|
i += pub_key[3 + i] + 2;
|
|
pub_key[0] = 0x30;
|
|
pub_key[1] = i;
|
|
*pub_key_len = i + 2;
|
|
}
|
|
|
|
// does not validate that this is valid der encoding
|
|
// assumes it is der encoding containing 1 number
|
|
void read_der_single(const uint8_t *der, bignum256 *elem)
|
|
{
|
|
int i, j;
|
|
uint8_t val[32];
|
|
i = 1 + der[1];
|
|
j = 31;
|
|
// we ignore all bytes after 32nd. if there are any, those are either zero or invalid for secp256k1
|
|
while (i > 1 && j >= 0) {
|
|
val[j] = der[i];
|
|
i--; j--;
|
|
}
|
|
for (i = 0; i <= j; i++) {
|
|
val[i] = 0;
|
|
}
|
|
read_32byte_big_endian(val, elem);
|
|
}
|
|
|
|
// does not validate that this is valid der encoding
|
|
// assumes it is der encoding containing 2 numbers (either public key or ecdsa signature)
|
|
void read_der_pair(const uint8_t *der, bignum256 *elem1, bignum256 *elem2)
|
|
{
|
|
read_der_single(der + 2, elem1);
|
|
read_der_single(der + 4 + der[3], elem2);
|
|
}
|
|
|
|
// uses secp256k1 curve
|
|
// pub_key and signature are DER encoded
|
|
// msg is a data that was signed
|
|
// msg_len is the message length
|
|
// returns 0 if verification succeeded
|
|
// it is assumed that public key is valid otherwise calling this does not make much sense
|
|
int ecdsa_verify(const uint8_t *pub_key, const uint8_t *signature, const uint8_t *msg, uint32_t msg_len)
|
|
{
|
|
int i, j;
|
|
uint8_t hash[32];
|
|
curve_point pub, res;
|
|
bignum256 r, s, z;
|
|
int res_is_zero = 0;
|
|
// compute hash function of message
|
|
SHA256_Raw(msg, msg_len, hash);
|
|
// if double hash is required uncomment the following line:
|
|
// SHA256_Raw(hash, 32, hash);
|
|
|
|
read_32byte_big_endian(hash, &z);
|
|
read_der_pair(pub_key, &pub.x, &pub.y);
|
|
read_der_pair(signature, &r, &s);
|
|
|
|
if (is_zero(&r) ||
|
|
is_zero(&s) ||
|
|
(!is_less(&r, &order256k1)) ||
|
|
(!is_less(&s, &order256k1))) return 1;
|
|
|
|
inverse(&s, &order256k1); // s^-1
|
|
multiply(&s, &z, &order256k1); // z*s^-1
|
|
mod(&z, &order256k1);
|
|
multiply(&r, &s, &order256k1); // r*s^-1
|
|
mod(&s, &order256k1);
|
|
if (is_zero(&z)) {
|
|
// our message hashes to zero
|
|
// I don't expect this to happen any time soon
|
|
res_is_zero = 1;
|
|
} else {
|
|
scalar_multiply(&z, &res);
|
|
}
|
|
|
|
// TODO both pub and res can be infinity, can have y = 0 OR can be equal
|
|
for (i = 0; i < 9; i++) {
|
|
for (j = 0; j < 30; j++) {
|
|
if (i == 8 && (s.val[i] >> j) == 0) break;
|
|
if (s.val[i] & (1u << j)) {
|
|
point_add(&pub, &res);
|
|
}
|
|
point_double(&pub);
|
|
}
|
|
}
|
|
|
|
mod(&(res.x), &prime256k1);
|
|
mod(&(res.x), &order256k1);
|
|
for (i = 0; i < 9; i++) {
|
|
if (res.x.val[i] != r.val[i]) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|