mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-18 03:10:58 +00:00
cbea765e38
[no changelog]
696 lines
22 KiB
C
696 lines
22 KiB
C
/*
|
|
* This file is part of the Trezor project, https://trezor.io/
|
|
*
|
|
* Copyright (c) SatoshiLabs
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "aes/aes.h"
|
|
#include "buffer.h"
|
|
#include "der.h"
|
|
#include "ecdsa.h"
|
|
#include "memzero.h"
|
|
#include "nist256p1.h"
|
|
#include "optiga_commands.h"
|
|
#include "optiga_prodtest.h"
|
|
#include "optiga_transport.h"
|
|
#include "prodtest_common.h"
|
|
#include "rand.h"
|
|
#include "secret.h"
|
|
#include "sha2.h"
|
|
|
|
typedef enum {
|
|
OPTIGA_PAIRING_UNPAIRED = 0,
|
|
OPTIGA_PAIRING_PAIRED,
|
|
OPTIGA_PAIRING_ERR_RNG,
|
|
OPTIGA_PAIRING_ERR_READ,
|
|
OPTIGA_PAIRING_ERR_HANDSHAKE,
|
|
} optiga_pairing;
|
|
|
|
static optiga_pairing optiga_pairing_state = OPTIGA_PAIRING_UNPAIRED;
|
|
|
|
// Data object access conditions.
|
|
static const optiga_metadata_item ACCESS_PAIRED =
|
|
OPTIGA_ACCESS_CONDITION(OPTIGA_ACCESS_COND_CONF, OID_KEY_PAIRING);
|
|
static const optiga_metadata_item KEY_USE_SIGN = {
|
|
(const uint8_t[]){OPTIGA_KEY_USAGE_SIGN}, 1};
|
|
static const optiga_metadata_item TYPE_PTFBIND = {
|
|
(const uint8_t[]){OPTIGA_DATA_TYPE_PTFBIND}, 1};
|
|
|
|
static bool optiga_paired(void) {
|
|
const char *details = "";
|
|
|
|
switch (optiga_pairing_state) {
|
|
case OPTIGA_PAIRING_PAIRED:
|
|
return true;
|
|
case OPTIGA_PAIRING_ERR_RNG:
|
|
details = "optiga_get_random error";
|
|
break;
|
|
case OPTIGA_PAIRING_ERR_READ:
|
|
details = "failed to read pairing secret";
|
|
break;
|
|
case OPTIGA_PAIRING_ERR_HANDSHAKE:
|
|
details = "optiga_sec_chan_handshake";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
vcp_println("ERROR Optiga not paired (%s).", details);
|
|
return false;
|
|
}
|
|
|
|
static bool set_metadata(uint16_t oid, const optiga_metadata *metadata) {
|
|
uint8_t serialized[OPTIGA_MAX_METADATA_SIZE] = {0};
|
|
size_t size = 0;
|
|
optiga_result ret = optiga_serialize_metadata(metadata, serialized,
|
|
sizeof(serialized), &size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_serialize_metadata error %d for OID 0x%04x.", ret,
|
|
oid);
|
|
return false;
|
|
}
|
|
|
|
optiga_set_data_object(oid, true, serialized, size);
|
|
|
|
ret =
|
|
optiga_get_data_object(oid, true, serialized, sizeof(serialized), &size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_get_metadata error %d for OID 0x%04x.", ret, oid);
|
|
return false;
|
|
}
|
|
|
|
optiga_metadata metadata_stored = {0};
|
|
ret = optiga_parse_metadata(serialized, size, &metadata_stored);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_parse_metadata error %d.", ret);
|
|
return false;
|
|
}
|
|
|
|
if (!optiga_compare_metadata(metadata, &metadata_stored)) {
|
|
vcp_println("ERROR optiga_compare_metadata failed.");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void pair_optiga(void) {
|
|
// The pairing key may already be written and locked. The success of the
|
|
// pairing procedure is determined by optiga_sec_chan_handshake(). Therefore
|
|
// it is OK for some of the intermediate operations to fail.
|
|
|
|
// Enable writing the pairing secret to OPTIGA.
|
|
optiga_metadata metadata = {0};
|
|
metadata.change = OPTIGA_META_ACCESS_ALWAYS;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
metadata.data_type = TYPE_PTFBIND;
|
|
set_metadata(OID_KEY_PAIRING, &metadata); // Ignore result.
|
|
|
|
// Generate pairing secret.
|
|
uint8_t secret[SECRET_OPTIGA_KEY_LEN] = {0};
|
|
optiga_result ret = optiga_get_random(secret, sizeof(secret));
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
optiga_pairing_state = OPTIGA_PAIRING_ERR_RNG;
|
|
return;
|
|
}
|
|
|
|
// Store pairing secret.
|
|
ret = optiga_set_data_object(OID_KEY_PAIRING, false, secret, sizeof(secret));
|
|
if (OPTIGA_SUCCESS == ret) {
|
|
secret_erase();
|
|
secret_write_header();
|
|
secret_write(secret, SECRET_OPTIGA_KEY_OFFSET, SECRET_OPTIGA_KEY_LEN);
|
|
}
|
|
|
|
// Verify whether the secret was stored correctly in flash and OPTIGA.
|
|
memzero(secret, sizeof(secret));
|
|
if (secret_read(secret, SECRET_OPTIGA_KEY_OFFSET, SECRET_OPTIGA_KEY_LEN) !=
|
|
sectrue) {
|
|
optiga_pairing_state = OPTIGA_PAIRING_ERR_READ;
|
|
return;
|
|
}
|
|
|
|
ret = optiga_sec_chan_handshake(secret, sizeof(secret));
|
|
memzero(secret, sizeof(secret));
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
optiga_pairing_state = OPTIGA_PAIRING_ERR_HANDSHAKE;
|
|
return;
|
|
}
|
|
|
|
optiga_pairing_state = OPTIGA_PAIRING_PAIRED;
|
|
return;
|
|
}
|
|
|
|
void optiga_lock(void) {
|
|
if (!optiga_paired()) return;
|
|
|
|
// Delete trust anchor.
|
|
optiga_result ret =
|
|
optiga_set_data_object(OID_TRUST_ANCHOR, false, (const uint8_t *)"\0", 1);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_set_data error %d for 0x%04x.", ret,
|
|
OID_TRUST_ANCHOR);
|
|
return;
|
|
}
|
|
|
|
// Set data object metadata.
|
|
optiga_metadata metadata = {0};
|
|
|
|
// Set metadata for device certificate.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
metadata.change = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.read = OPTIGA_META_ACCESS_ALWAYS;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
if (!set_metadata(OID_CERT_DEV, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Set metadata for FIDO attestation certificate.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
metadata.change = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.read = OPTIGA_META_ACCESS_ALWAYS;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
if (!set_metadata(OID_CERT_FIDO, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Set metadata for device private key.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
metadata.change = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.read = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.execute = ACCESS_PAIRED;
|
|
metadata.key_usage = KEY_USE_SIGN;
|
|
if (!set_metadata(OID_KEY_DEV, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Set metadata for FIDO attestation private key.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
metadata.change = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.read = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.execute = ACCESS_PAIRED;
|
|
metadata.key_usage = KEY_USE_SIGN;
|
|
if (!set_metadata(OID_KEY_FIDO, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Set metadata for pairing key.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
metadata.change = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.read = OPTIGA_META_ACCESS_NEVER;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
metadata.data_type = TYPE_PTFBIND;
|
|
if (!set_metadata(OID_KEY_PAIRING, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
vcp_println("OK");
|
|
}
|
|
|
|
optiga_locked_status get_optiga_locked_status(void) {
|
|
if (!optiga_paired()) return OPTIGA_LOCKED_ERROR;
|
|
|
|
const uint16_t oids[] = {OID_CERT_DEV, OID_CERT_FIDO, OID_KEY_DEV,
|
|
OID_KEY_FIDO, OID_KEY_PAIRING};
|
|
|
|
optiga_metadata locked_metadata = {0};
|
|
locked_metadata.lcso = OPTIGA_META_LCS_OPERATIONAL;
|
|
for (size_t i = 0; i < sizeof(oids) / sizeof(oids[0]); ++i) {
|
|
uint8_t metadata_buffer[OPTIGA_MAX_METADATA_SIZE] = {0};
|
|
size_t metadata_size = 0;
|
|
optiga_result ret =
|
|
optiga_get_data_object(oids[i], true, metadata_buffer,
|
|
sizeof(metadata_buffer), &metadata_size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_get_metadata error %d for OID 0x%04x.", ret,
|
|
oids[i]);
|
|
return OPTIGA_LOCKED_ERROR;
|
|
}
|
|
|
|
optiga_metadata stored_metadata = {0};
|
|
ret =
|
|
optiga_parse_metadata(metadata_buffer, metadata_size, &stored_metadata);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_parse_metadata error %d.", ret);
|
|
return OPTIGA_LOCKED_ERROR;
|
|
}
|
|
|
|
if (!optiga_compare_metadata(&locked_metadata, &stored_metadata)) {
|
|
return OPTIGA_LOCKED_FALSE;
|
|
}
|
|
}
|
|
|
|
return OPTIGA_LOCKED_TRUE;
|
|
}
|
|
|
|
void check_locked(void) {
|
|
switch (get_optiga_locked_status()) {
|
|
case OPTIGA_LOCKED_TRUE:
|
|
vcp_println("OK YES");
|
|
break;
|
|
case OPTIGA_LOCKED_FALSE:
|
|
vcp_println("OK NO");
|
|
break;
|
|
default:
|
|
// Error reported by get_optiga_locked_status().
|
|
break;
|
|
}
|
|
}
|
|
|
|
void optigaid_read(void) {
|
|
if (!optiga_paired()) return;
|
|
|
|
uint8_t optiga_id[27] = {0};
|
|
size_t optiga_id_size = 0;
|
|
|
|
optiga_result ret =
|
|
optiga_get_data_object(OPTIGA_OID_COPROC_UID, false, optiga_id,
|
|
sizeof(optiga_id), &optiga_id_size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_get_data_object error %d for 0x%04x.", ret,
|
|
OPTIGA_OID_COPROC_UID);
|
|
return;
|
|
}
|
|
|
|
vcp_print("OK ");
|
|
vcp_println_hex(optiga_id, optiga_id_size);
|
|
}
|
|
|
|
void cert_read(uint16_t oid) {
|
|
if (!optiga_paired()) return;
|
|
|
|
static uint8_t cert[OPTIGA_MAX_CERT_SIZE] = {0};
|
|
size_t cert_size = 0;
|
|
optiga_result ret =
|
|
optiga_get_data_object(oid, false, cert, sizeof(cert), &cert_size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_get_data_object error %d for 0x%04x.", ret, oid);
|
|
return;
|
|
}
|
|
|
|
size_t offset = 0;
|
|
if (cert[0] == 0xC0) {
|
|
// TLS identity certificate chain.
|
|
size_t tls_identity_size = (cert[1] << 8) + cert[2];
|
|
size_t cert_chain_size = (cert[3] << 16) + (cert[4] << 8) + cert[5];
|
|
size_t first_cert_size = (cert[6] << 16) + (cert[7] << 8) + cert[8];
|
|
if (tls_identity_size + 3 > cert_size ||
|
|
cert_chain_size + 3 > tls_identity_size ||
|
|
first_cert_size > cert_chain_size) {
|
|
vcp_println("ERROR invalid TLS identity in 0x%04x.", oid);
|
|
return;
|
|
}
|
|
offset = 9;
|
|
cert_size = first_cert_size;
|
|
}
|
|
|
|
if (cert_size == 0) {
|
|
vcp_println("ERROR no certificate in 0x%04x.", oid);
|
|
return;
|
|
}
|
|
|
|
vcp_print("OK ");
|
|
vcp_println_hex(cert + offset, cert_size);
|
|
}
|
|
|
|
void cert_write(uint16_t oid, char *data) {
|
|
if (!optiga_paired()) return;
|
|
|
|
// Enable writing to the certificate slot.
|
|
optiga_metadata metadata = {0};
|
|
metadata.change = OPTIGA_META_ACCESS_ALWAYS;
|
|
set_metadata(oid, &metadata); // Ignore result.
|
|
|
|
uint8_t data_bytes[OPTIGA_MAX_CERT_SIZE];
|
|
|
|
int len = get_from_hex(data_bytes, sizeof(data_bytes), data);
|
|
if (len < 0) {
|
|
vcp_println("ERROR Hexadecimal decoding error %d.", len);
|
|
return;
|
|
}
|
|
|
|
optiga_result ret = optiga_set_data_object(oid, false, data_bytes, len);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_set_data error %d for 0x%04x.", ret, oid);
|
|
return;
|
|
}
|
|
|
|
// Verify that the certificate was written correctly.
|
|
static uint8_t cert[OPTIGA_MAX_CERT_SIZE] = {0};
|
|
size_t cert_size = 0;
|
|
ret = optiga_get_data_object(oid, false, cert, sizeof(cert), &cert_size);
|
|
if (OPTIGA_SUCCESS != ret || cert_size != len ||
|
|
memcmp(data_bytes, cert, len) != 0) {
|
|
vcp_println("ERROR optiga_get_data_object error %d for 0x%04x.", ret, oid);
|
|
return;
|
|
}
|
|
|
|
if (oid == OID_CERT_DEV && !check_device_cert_chain(cert, cert_size)) {
|
|
// Error returned by check_device_cert_chain().
|
|
return;
|
|
}
|
|
|
|
vcp_println("OK");
|
|
}
|
|
|
|
void pubkey_read(uint16_t oid) {
|
|
if (!optiga_paired()) return;
|
|
|
|
// Enable key agreement usage.
|
|
|
|
optiga_metadata metadata = {0};
|
|
metadata.key_usage = OPTIGA_META_KEY_USE_KEYAGREE;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
|
|
if (!set_metadata(oid, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Execute ECDH with base point to get the x-coordinate of the public key.
|
|
static const uint8_t BASE_POINT[] = {
|
|
0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
|
|
0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81,
|
|
0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96,
|
|
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a,
|
|
0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
|
|
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5};
|
|
uint8_t public_key[32] = {0};
|
|
size_t public_key_size = 0;
|
|
optiga_result ret =
|
|
optiga_calc_ssec(OPTIGA_CURVE_P256, oid, BASE_POINT, sizeof(BASE_POINT),
|
|
public_key, sizeof(public_key), &public_key_size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_calc_ssec error %d.", ret);
|
|
return;
|
|
}
|
|
|
|
vcp_print("OK ");
|
|
vcp_println_hex(public_key, public_key_size);
|
|
}
|
|
|
|
void keyfido_write(char *data) {
|
|
if (!optiga_paired()) return;
|
|
|
|
const size_t EPH_PUB_KEY_SIZE = 33;
|
|
const size_t PAYLOAD_SIZE = 32;
|
|
const size_t CIPHERTEXT_OFFSET = EPH_PUB_KEY_SIZE;
|
|
const size_t EXPECTED_SIZE = EPH_PUB_KEY_SIZE + PAYLOAD_SIZE;
|
|
|
|
// Enable key agreement usage for device key.
|
|
|
|
optiga_metadata metadata = {0};
|
|
metadata.key_usage = OPTIGA_META_KEY_USE_KEYAGREE;
|
|
metadata.execute = OPTIGA_META_ACCESS_ALWAYS;
|
|
|
|
if (!set_metadata(OID_KEY_DEV, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Read encrypted FIDO attestation private key.
|
|
|
|
uint8_t data_bytes[EXPECTED_SIZE];
|
|
int len = get_from_hex(data_bytes, sizeof(data_bytes), data);
|
|
if (len < 0) {
|
|
vcp_println("ERROR Hexadecimal decoding error %d.", len);
|
|
return;
|
|
}
|
|
|
|
if (len != EXPECTED_SIZE) {
|
|
vcp_println("ERROR Unexpected input length.");
|
|
return;
|
|
}
|
|
|
|
// Expand sender's ephemeral public key.
|
|
uint8_t public_key[3 + 65] = {0x03, 0x42, 0x00};
|
|
if (ecdsa_uncompress_pubkey(&nist256p1, data_bytes, &public_key[3]) != 1) {
|
|
vcp_println("ERROR Failed to decode public key.");
|
|
return;
|
|
}
|
|
|
|
// Execute ECDH with device private key.
|
|
uint8_t secret[32] = {0};
|
|
size_t secret_size = 0;
|
|
optiga_result ret = optiga_calc_ssec(OPTIGA_CURVE_P256, OID_KEY_DEV,
|
|
public_key, sizeof(public_key), secret,
|
|
sizeof(secret), &secret_size);
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
memzero(secret, sizeof(secret));
|
|
vcp_println("ERROR optiga_calc_ssec error %d.", ret);
|
|
return;
|
|
}
|
|
|
|
// Hash the shared secret. Use the result as the decryption key.
|
|
sha256_Raw(secret, secret_size, secret);
|
|
aes_decrypt_ctx ctx = {0};
|
|
AES_RETURN aes_ret = aes_decrypt_key256(secret, &ctx);
|
|
if (EXIT_SUCCESS != aes_ret) {
|
|
vcp_println("ERROR aes_decrypt_key256 error.");
|
|
memzero(&ctx, sizeof(ctx));
|
|
memzero(secret, sizeof(secret));
|
|
return;
|
|
}
|
|
|
|
// Decrypt the FIDO attestation key.
|
|
uint8_t fido_key[PAYLOAD_SIZE];
|
|
|
|
// The IV is intentionally all-zero, which is not a problem, because the
|
|
// encryption key is unique for each ciphertext.
|
|
uint8_t iv[AES_BLOCK_SIZE] = {0};
|
|
aes_ret = aes_cbc_decrypt(&data_bytes[CIPHERTEXT_OFFSET], fido_key,
|
|
sizeof(fido_key), iv, &ctx);
|
|
memzero(&ctx, sizeof(ctx));
|
|
memzero(secret, sizeof(secret));
|
|
if (EXIT_SUCCESS != aes_ret) {
|
|
memzero(fido_key, sizeof(fido_key));
|
|
vcp_println("ERROR aes_cbc_decrypt error.");
|
|
return;
|
|
}
|
|
|
|
// Write trust anchor certificate to OID 0xE0E8
|
|
ret = optiga_set_trust_anchor();
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
memzero(fido_key, sizeof(fido_key));
|
|
vcp_println("ERROR optiga_set_trust_anchor error %d.", ret);
|
|
return;
|
|
}
|
|
|
|
// Set change access condition for the FIDO key to Int(0xE0E8), so that we
|
|
// can write the FIDO key using the trust anchor in OID 0xE0E8.
|
|
memzero(&metadata, sizeof(metadata));
|
|
metadata.change.ptr = (const uint8_t *)"\x21\xe0\xe8";
|
|
metadata.change.len = 3;
|
|
if (!set_metadata(OID_KEY_FIDO, &metadata)) {
|
|
return;
|
|
}
|
|
|
|
// Store the FIDO attestation key.
|
|
ret = optiga_set_priv_key(OID_KEY_FIDO, fido_key);
|
|
memzero(fido_key, sizeof(fido_key));
|
|
if (OPTIGA_SUCCESS != ret) {
|
|
vcp_println("ERROR optiga_set_priv_key error %d.", ret);
|
|
return;
|
|
}
|
|
|
|
vcp_println("OK");
|
|
}
|
|
|
|
void sec_read(void) {
|
|
if (!optiga_paired()) return;
|
|
|
|
uint8_t sec = 0;
|
|
size_t size = 0;
|
|
|
|
optiga_result ret =
|
|
optiga_get_data_object(OPTIGA_OID_SEC, false, &sec, sizeof(sec), &size);
|
|
if (OPTIGA_SUCCESS != ret || sizeof(sec) != size) {
|
|
vcp_println("ERROR optiga_get_data_object error %d for 0x%04x.", ret,
|
|
OPTIGA_OID_SEC);
|
|
return;
|
|
}
|
|
|
|
vcp_print("OK ");
|
|
vcp_println_hex(&sec, sizeof(sec));
|
|
}
|
|
|
|
// clang-format off
|
|
static const uint8_t ECDSA_WITH_SHA256[] = {
|
|
0x30, 0x0a, // a sequence of 10 bytes
|
|
0x06, 0x08, // an OID of 8 bytes
|
|
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x02,
|
|
};
|
|
// clang-format on
|
|
|
|
static const uint8_t ROOT_PUBLIC_KEYS[][65] = {
|
|
{
|
|
// Production root public key.
|
|
0x04, 0xca, 0x97, 0x48, 0x0a, 0xc0, 0xd7, 0xb1, 0xe6, 0xef, 0xaf,
|
|
0xe5, 0x18, 0xcd, 0x43, 0x3c, 0xec, 0x2b, 0xf8, 0xab, 0x98, 0x22,
|
|
0xd7, 0x6e, 0xaf, 0xd3, 0x43, 0x63, 0xb5, 0x5d, 0x63, 0xe6, 0x03,
|
|
0x80, 0xbf, 0xf2, 0x0a, 0xcc, 0x75, 0xcd, 0xe0, 0x3c, 0xff, 0xcb,
|
|
0x50, 0xab, 0x6f, 0x8c, 0xe7, 0x0c, 0x87, 0x8e, 0x37, 0xeb, 0xc5,
|
|
0x8f, 0xf7, 0xcc, 0xa0, 0xa8, 0x3b, 0x16, 0xb1, 0x5f, 0xa5,
|
|
},
|
|
{
|
|
// Development root public key.
|
|
0x04, 0x7f, 0x77, 0x36, 0x8d, 0xea, 0x2d, 0x4d, 0x61, 0xe9, 0x89,
|
|
0xf4, 0x74, 0xa5, 0x67, 0x23, 0xc3, 0x21, 0x2d, 0xac, 0xf8, 0xa8,
|
|
0x08, 0xd8, 0x79, 0x55, 0x95, 0xef, 0x38, 0x44, 0x14, 0x27, 0xc4,
|
|
0x38, 0x9b, 0xc4, 0x54, 0xf0, 0x20, 0x89, 0xd7, 0xf0, 0x8b, 0x87,
|
|
0x30, 0x05, 0xe4, 0xc2, 0x8d, 0x43, 0x24, 0x68, 0x99, 0x78, 0x71,
|
|
0xc0, 0xbf, 0x28, 0x6f, 0xd3, 0x86, 0x1e, 0x21, 0xe9, 0x6a,
|
|
},
|
|
};
|
|
|
|
bool check_device_cert_chain(const uint8_t *chain, size_t chain_size) {
|
|
// Checks the integrity of the device certificate chain to ensure that the
|
|
// certificate data was not corrupted in transport and that the device
|
|
// certificate belongs to this device. THIS IS NOT A FULL VERIFICATION OF THE
|
|
// CERTIFICATE CHAIN.
|
|
|
|
// Generate a P-256 signature using the device private key.
|
|
uint8_t digest[SHA256_DIGEST_LENGTH] = {1};
|
|
uint8_t der_sig[72] = {DER_SEQUENCE};
|
|
size_t der_sig_size = 0;
|
|
if (optiga_calc_sign(OID_KEY_DEV, digest, sizeof(digest), &der_sig[2],
|
|
sizeof(der_sig) - 2, &der_sig_size) != OPTIGA_SUCCESS) {
|
|
vcp_println("ERROR check_device_cert_chain, optiga_calc_sign.");
|
|
return false;
|
|
}
|
|
der_sig[1] = der_sig_size;
|
|
|
|
uint8_t sig[64] = {0};
|
|
if (ecdsa_sig_from_der(der_sig, der_sig_size + 2, sig) != 0) {
|
|
vcp_println("ERROR check_device_cert_chain, ecdsa_sig_from_der.");
|
|
return false;
|
|
}
|
|
|
|
BUFFER_READER chain_reader = {0};
|
|
buffer_reader_init(&chain_reader, chain, chain_size);
|
|
int cert_count = 0;
|
|
while (buffer_remaining(&chain_reader) > 0) {
|
|
// Read the next certificate in the chain.
|
|
cert_count += 1;
|
|
DER_ITEM cert = {0};
|
|
if (!der_read_item(&chain_reader, &cert) || cert.id != DER_SEQUENCE) {
|
|
vcp_println("ERROR check_device_cert_chain, der_read_item 1, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Read the tbsCertificate.
|
|
DER_ITEM tbs_cert = {0};
|
|
if (!der_read_item(&cert.buf, &tbs_cert)) {
|
|
vcp_println("ERROR check_device_cert_chain, der_read_item 2, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Read the Subject Public Key Info.
|
|
DER_ITEM pub_key_info = {0};
|
|
for (int i = 0; i < 7; ++i) {
|
|
if (!der_read_item(&tbs_cert.buf, &pub_key_info)) {
|
|
vcp_println("ERROR check_device_cert_chain, der_read_item 3, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Read the public key.
|
|
DER_ITEM pub_key = {0};
|
|
uint8_t unused_bits = 0;
|
|
const uint8_t *pub_key_bytes = NULL;
|
|
for (int i = 0; i < 2; ++i) {
|
|
if (!der_read_item(&pub_key_info.buf, &pub_key)) {
|
|
vcp_println("ERROR check_device_cert_chain, der_read_item 4, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!buffer_get(&pub_key.buf, &unused_bits) ||
|
|
buffer_remaining(&pub_key.buf) != 65 ||
|
|
!buffer_ptr(&pub_key.buf, &pub_key_bytes)) {
|
|
vcp_println("ERROR check_device_cert_chain, reading public key, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Verify the previous signature.
|
|
if (ecdsa_verify_digest(&nist256p1, pub_key_bytes, sig, digest) != 0) {
|
|
vcp_println(
|
|
"ERROR check_device_cert_chain, ecdsa_verify_digest, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Prepare the hash of tbsCertificate for the next signature verification.
|
|
sha256_Raw(tbs_cert.buf.data, tbs_cert.buf.size, digest);
|
|
|
|
// Read the signatureAlgorithm and ensure it matches ECDSA_WITH_SHA256.
|
|
DER_ITEM sig_alg = {0};
|
|
if (!der_read_item(&cert.buf, &sig_alg) ||
|
|
sig_alg.buf.size != sizeof(ECDSA_WITH_SHA256) ||
|
|
memcmp(ECDSA_WITH_SHA256, sig_alg.buf.data,
|
|
sizeof(ECDSA_WITH_SHA256)) != 0) {
|
|
vcp_println(
|
|
"ERROR check_device_cert_chain, checking signatureAlgorithm, cert "
|
|
"%d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Read the signatureValue.
|
|
DER_ITEM sig_val = {0};
|
|
if (!der_read_item(&cert.buf, &sig_val) || sig_val.id != DER_BIT_STRING ||
|
|
!buffer_get(&sig_val.buf, &unused_bits) || unused_bits != 0) {
|
|
vcp_println(
|
|
"ERROR check_device_cert_chain, reading signatureValue, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
|
|
// Extract the signature for the next signature verification.
|
|
const uint8_t *sig_bytes = NULL;
|
|
if (!buffer_ptr(&sig_val.buf, &sig_bytes) ||
|
|
ecdsa_sig_from_der(sig_bytes, buffer_remaining(&sig_val.buf), sig) !=
|
|
0) {
|
|
vcp_println("ERROR check_device_cert_chain, ecdsa_sig_from_der, cert %d.",
|
|
cert_count);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Verify that the last certificate in the chain is valid for one of the known
|
|
// root public keys.
|
|
for (int i = 0; i < sizeof(ROOT_PUBLIC_KEYS) / sizeof(ROOT_PUBLIC_KEYS[0]);
|
|
++i) {
|
|
if (ecdsa_verify_digest(&nist256p1, ROOT_PUBLIC_KEYS[i], sig, digest) ==
|
|
0) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
vcp_println("ERROR check_device_cert_chain, ecdsa_verify_digest root.");
|
|
return false;
|
|
}
|