1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-30 18:10:56 +00:00
trezor-firmware/crypto/sha2.c
2023-08-29 10:59:34 +02:00

1325 lines
39 KiB
C

/**
* Copyright (c) 2000-2001 Aaron D. Gifford
* Copyright (c) 2013-2014 Pavol Rusnak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holder nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <string.h>
#include <stdint.h>
#include "sha2.h"
#include "memzero.h"
#include "byte_order.h"
/*
* ASSERT NOTE:
* Some sanity checking code is included using assert(). On my FreeBSD
* system, this additional code can be removed by compiling with NDEBUG
* defined. Check your own systems manpage on assert() to see how to
* compile WITHOUT the sanity checking code on your system.
*
* UNROLLED TRANSFORM LOOP NOTE:
* You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
* loop version for the hash transform rounds (defined using macros
* later in this file). Either define on the command line, for example:
*
* cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
*
* or define below:
*
* #define SHA2_UNROLL_TRANSFORM
*
*/
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivilent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
typedef uint8_t sha2_byte; /* Exactly 1 byte */
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
/*** SHA-256/384/512 Various Length Definitions ***********************/
/* NOTE: Most of these are in sha2.h */
#define SHA1_SHORT_BLOCK_LENGTH (SHA1_BLOCK_LENGTH - 8)
#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
* unsigned 128-bit integer (represented using a two-element array of
* 64-bit words):
*/
#define ADDINC128(w,n) { \
(w)[0] += (sha2_word64)(n); \
if ((w)[0] < (n)) { \
(w)[1]++; \
} \
}
#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
/*** THE SIX LOGICAL FUNCTIONS ****************************************/
/*
* Bit shifting and rotation (used by the six SHA-XYZ logical functions:
*
* NOTE: In the original SHA-256/384/512 document, the shift-right
* function was named R and the rotate-right function was called S.
* (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the
* web.)
*
* The newer NIST FIPS 180-2 document uses a much clearer naming
* scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for
* rotate-left. (See:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
* on the web.)
*
* WARNING: These macros must be used cautiously, since they reference
* supplied parameters sometimes more than once, and thus could have
* unexpected side-effects if used without taking this into account.
*/
/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
#define SHR(b,x) ((x) >> (b))
/* 32-bit Rotate-right (used in SHA-256): */
#define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
#define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
/* 32-bit Rotate-left (used in SHA-1): */
#define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b))))
/* Two of six logical functions used in SHA-1, SHA-256, SHA-384, and SHA-512: */
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
/* Function used in SHA-1: */
#define Parity(x,y,z) ((x) ^ (y) ^ (z))
/* Four of six logical functions used in SHA-256: */
#define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x)))
#define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x)))
#define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR(3 , (x)))
#define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(10, (x)))
/* Four of six logical functions used in SHA-384 and SHA-512: */
#define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x)))
#define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x)))
#define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x)))
#define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x)))
/*** INTERNAL FUNCTION PROTOTYPES *************************************/
/* NOTE: These should not be accessed directly from outside this
* library -- they are intended for private internal visibility/use
* only.
*/
static void sha512_Last(SHA512_CTX*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-1: */
#define K1_0_TO_19 0x5a827999UL
#define K1_20_TO_39 0x6ed9eba1UL
#define K1_40_TO_59 0x8f1bbcdcUL
#define K1_60_TO_79 0xca62c1d6UL
/* Initial hash value H for SHA-1: */
const sha2_word32 sha1_initial_hash_value[SHA1_DIGEST_LENGTH / sizeof(sha2_word32)] = {
0x67452301UL,
0xefcdab89UL,
0x98badcfeUL,
0x10325476UL,
0xc3d2e1f0UL
};
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
const sha2_word32 sha256_initial_hash_value[8] = {
0x6a09e667UL,
0xbb67ae85UL,
0x3c6ef372UL,
0xa54ff53aUL,
0x510e527fUL,
0x9b05688cUL,
0x1f83d9abUL,
0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
static const sha2_word64 K512[80] = {
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-512 */
const sha2_word64 sha512_initial_hash_value[8] = {
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/* Initial hash value H for SHA-384 */
const sha2_word64 sha384_initial_hash_value[8] = {
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-1: ***********************************************************/
void sha1_Init(SHA1_CTX* context) {
MEMCPY_BCOPY(context->state, sha1_initial_hash_value, SHA1_DIGEST_LENGTH);
memzero(context->buffer, SHA1_BLOCK_LENGTH);
context->bitcount = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-1 round macros: */
#define ROUND1_0_TO_15(a,b,c,d,e) \
(e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \
K1_0_TO_19 + ( W1[j] = *data++ ); \
(b) = ROTL32(30, (b)); \
j++;
#define ROUND1_16_TO_19(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_20_TO_39(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_40_TO_59(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
#define ROUND1_60_TO_79(a,b,c,d,e) \
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \
(e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \
(b) = ROTL32(30, b); \
j++;
void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
sha2_word32 T1 = 0;
sha2_word32 W1[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
j = 0;
/* Rounds 0 to 15 unrolled: */
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
ROUND1_0_TO_15(e,a,b,c,d);
ROUND1_0_TO_15(d,e,a,b,c);
ROUND1_0_TO_15(c,d,e,a,b);
ROUND1_0_TO_15(b,c,d,e,a);
ROUND1_0_TO_15(a,b,c,d,e);
/* Rounds 16 to 19 unrolled: */
ROUND1_16_TO_19(e,a,b,c,d);
ROUND1_16_TO_19(d,e,a,b,c);
ROUND1_16_TO_19(c,d,e,a,b);
ROUND1_16_TO_19(b,c,d,e,a);
/* Rounds 20 to 39 unrolled: */
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
ROUND1_20_TO_39(a,b,c,d,e);
ROUND1_20_TO_39(e,a,b,c,d);
ROUND1_20_TO_39(d,e,a,b,c);
ROUND1_20_TO_39(c,d,e,a,b);
ROUND1_20_TO_39(b,c,d,e,a);
/* Rounds 40 to 59 unrolled: */
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
ROUND1_40_TO_59(a,b,c,d,e);
ROUND1_40_TO_59(e,a,b,c,d);
ROUND1_40_TO_59(d,e,a,b,c);
ROUND1_40_TO_59(c,d,e,a,b);
ROUND1_40_TO_59(b,c,d,e,a);
/* Rounds 60 to 79 unrolled: */
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
ROUND1_60_TO_79(a,b,c,d,e);
ROUND1_60_TO_79(e,a,b,c,d);
ROUND1_60_TO_79(d,e,a,b,c);
ROUND1_60_TO_79(c,d,e,a,b);
ROUND1_60_TO_79(b,c,d,e,a);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
/* Clean up */
a = b = c = d = e = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0;
sha2_word32 T1 = 0;
sha2_word32 W1[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
j = 0;
do {
T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++);
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 16);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 20);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 40);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 60);
do {
T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f];
T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1));
e = d;
d = c;
c = ROTL32(30, b);
b = a;
a = T1;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
/* Clean up */
a = b = c = d = e = T1 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha1_Update(SHA1_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA1_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
sha1_Transform(context->state, context->buffer, context->state);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA1_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
MEMCPY_BCOPY(context->buffer, data, SHA1_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
sha1_Transform(context->state, context->buffer, context->state);
context->bitcount += SHA1_BLOCK_LENGTH << 3;
len -= SHA1_BLOCK_LENGTH;
data += SHA1_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha1_Final(SHA1_CTX* context, sha2_byte digest[SHA1_DIGEST_LENGTH]) {
unsigned int usedspace = 0;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH;
/* Begin padding with a 1 bit: */
((uint8_t*)context->buffer)[usedspace++] = 0x80;
if (usedspace > SHA1_SHORT_BLOCK_LENGTH) {
memzero(((uint8_t*)context->buffer) + usedspace, SHA1_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
/* Do second-to-last transform: */
sha1_Transform(context->state, context->buffer, context->state);
/* And prepare the last transform: */
usedspace = 0;
}
/* Set-up for the last transform: */
memzero(((uint8_t*)context->buffer) + usedspace, SHA1_SHORT_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 14; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
/* Set the bit count: */
context->buffer[14] = context->bitcount >> 32;
context->buffer[15] = context->bitcount & 0xffffffff;
/* Final transform: */
sha1_Transform(context->state, context->buffer, context->state);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
for (int j = 0; j < 5; j++) {
REVERSE32(context->state[j],context->state[j]);
}
#endif
MEMCPY_BCOPY(digest, context->state, SHA1_DIGEST_LENGTH);
}
/* Clean up state data: */
memzero(context, sizeof(SHA1_CTX));
usedspace = 0;
}
char *sha1_End(SHA1_CTX* context, char buffer[SHA1_DIGEST_STRING_LENGTH]) {
sha2_byte digest[SHA1_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha1_Final(context, digest);
for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memzero(context, sizeof(SHA1_CTX));
}
memzero(digest, SHA1_DIGEST_LENGTH);
return buffer;
}
void sha1_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA1_DIGEST_LENGTH]) {
SHA1_CTX context = {0};
sha1_Init(&context);
sha1_Update(&context, data, len);
sha1_Final(&context, digest);
}
char* sha1_Data(const sha2_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) {
SHA1_CTX context = {0};
sha1_Init(&context);
sha1_Update(&context, data, len);
return sha1_End(&context, digest);
}
/*** SHA-256: *********************************************************/
void sha256_Init(SHA256_CTX* context) {
if (context == (SHA256_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
memzero(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = 0;
}
void sha256_Init_ex(SHA256_CTX *context, const uint32_t state[8], uint64_t bitcount) {
if (context == (SHA256_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, state, SHA256_DIGEST_LENGTH);
memzero(context->buffer, SHA256_BLOCK_LENGTH);
context->bitcount = bitcount;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-256 round macros: */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + (W256[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
s0 = sigma0_256(s0); \
s1 = W256[(j+14)&0x0f]; \
s1 = sigma1_256(s1); \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word32 T1 = 0;
sha2_word32 W256[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
f = state_in[5];
g = state_in[6];
h = state_in[7];
j = 0;
do {
/* Rounds 0 to 15 (unrolled): */
ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds to 64: */
do {
ROUND256(a,b,c,d,e,f,g,h);
ROUND256(h,a,b,c,d,e,f,g);
ROUND256(g,h,a,b,c,d,e,f);
ROUND256(f,g,h,a,b,c,d,e);
ROUND256(e,f,g,h,a,b,c,d);
ROUND256(d,e,f,g,h,a,b,c);
ROUND256(c,d,e,f,g,h,a,b);
ROUND256(b,c,d,e,f,g,h,a);
} while (j < 64);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
state_out[5] = state_in[5] + f;
state_out[6] = state_in[6] + g;
state_out[7] = state_in[7] + h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) {
sha2_word32 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word32 T1 = 0, T2 = 0 , W256[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
f = state_in[5];
g = state_in[6];
h = state_in[7];
j = 0;
do {
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W256[(j+1)&0x0f];
s0 = sigma0_256(s0);
s1 = W256[(j+14)&0x0f];
s1 = sigma1_256(s1);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
(W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 64);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
state_out[5] = state_in[5] + f;
state_out[6] = state_in[6] + g;
state_out[7] = state_in[7] + h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA256_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
context->bitcount += freespace << 3;
len -= freespace;
data += freespace;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
sha256_Transform(context->state, context->buffer, context->state);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
context->bitcount += len << 3;
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
sha256_Transform(context->state, context->buffer, context->state);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
context->bitcount += len << 3;
}
/* Clean up: */
usedspace = freespace = 0;
}
void sha256_Final(SHA256_CTX* context, sha2_byte digest[SHA256_DIGEST_LENGTH]) {
unsigned int usedspace = 0;
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
/* Begin padding with a 1 bit: */
((uint8_t*)context->buffer)[usedspace++] = 0x80;
if (usedspace > SHA256_SHORT_BLOCK_LENGTH) {
memzero(((uint8_t*)context->buffer) + usedspace, SHA256_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
/* Do second-to-last transform: */
sha256_Transform(context->state, context->buffer, context->state);
/* And prepare the last transform: */
usedspace = 0;
}
/* Set-up for the last transform: */
memzero(((uint8_t*)context->buffer) + usedspace, SHA256_SHORT_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 14; j++) {
REVERSE32(context->buffer[j],context->buffer[j]);
}
#endif
/* Set the bit count: */
context->buffer[14] = context->bitcount >> 32;
context->buffer[15] = context->bitcount & 0xffffffff;
/* Final transform: */
sha256_Transform(context->state, context->buffer, context->state);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
for (int j = 0; j < 8; j++) {
REVERSE32(context->state[j],context->state[j]);
}
#endif
MEMCPY_BCOPY(digest, context->state, SHA256_DIGEST_LENGTH);
}
/* Clean up state data: */
memzero(context, sizeof(SHA256_CTX));
usedspace = 0;
}
char *sha256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]) {
sha2_byte digest[SHA256_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha256_Final(context, digest);
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memzero(context, sizeof(SHA256_CTX));
}
memzero(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
void sha256_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA256_DIGEST_LENGTH]) {
SHA256_CTX context = {0};
sha256_Init(&context);
sha256_Update(&context, data, len);
sha256_Final(&context, digest);
}
char* sha256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA256_CTX context = {0};
sha256_Init(&context);
sha256_Update(&context, data, len);
return sha256_End(&context, digest);
}
/*** SHA-512 and SHA-384: *********************************************/
void sha512_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
memzero(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
static void sha384_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
return;
}
MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
memzero(context->buffer, SHA512_BLOCK_LENGTH);
context->bitcount[0] = context->bitcount[1] = 0;
}
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
s0 = sigma0_512(s0); \
s1 = W512[(j+14)&0x0f]; \
s1 = sigma1_512(s1); \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
(d) += T1; \
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word64 T1 = 0, W512[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
f = state_in[5];
g = state_in[6];
h = state_in[7];
j = 0;
do {
ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
} while (j < 16);
/* Now for the remaining rounds up to 79: */
do {
ROUND512(a,b,c,d,e,f,g,h);
ROUND512(h,a,b,c,d,e,f,g);
ROUND512(g,h,a,b,c,d,e,f);
ROUND512(f,g,h,a,b,c,d,e);
ROUND512(e,f,g,h,a,b,c,d);
ROUND512(d,e,f,g,h,a,b,c);
ROUND512(c,d,e,f,g,h,a,b);
ROUND512(b,c,d,e,f,g,h,a);
} while (j < 80);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
state_out[5] = state_in[5] + f;
state_out[6] = state_in[6] + g;
state_out[7] = state_in[7] + h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) {
sha2_word64 a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0, s0 = 0, s1 = 0;
sha2_word64 T1 = 0, T2 = 0, W512[16] = {0};
int j = 0;
/* Initialize registers with the prev. intermediate value */
a = state_in[0];
b = state_in[1];
c = state_in[2];
d = state_in[3];
e = state_in[4];
f = state_in[5];
g = state_in[6];
h = state_in[7];
j = 0;
do {
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 16);
do {
/* Part of the message block expansion: */
s0 = W512[(j+1)&0x0f];
s0 = sigma0_512(s0);
s1 = W512[(j+14)&0x0f];
s1 = sigma1_512(s1);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
j++;
} while (j < 80);
/* Compute the current intermediate hash value */
state_out[0] = state_in[0] + a;
state_out[1] = state_in[1] + b;
state_out[2] = state_in[2] + c;
state_out[3] = state_in[3] + d;
state_out[4] = state_in[4] + e;
state_out[5] = state_in[5] + f;
state_out[6] = state_in[6] + g;
state_out[7] = state_in[7] + h;
/* Clean up */
a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
unsigned int freespace = 0, usedspace = 0;
if (len == 0) {
/* Calling with no data is valid - we do nothing */
return;
}
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
/* Calculate how much free space is available in the buffer */
freespace = SHA512_BLOCK_LENGTH - usedspace;
if (len >= freespace) {
/* Fill the buffer completely and process it */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace);
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE64(context->buffer[j],context->buffer[j]);
}
#endif
sha512_Transform(context->state, context->buffer, context->state);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len);
ADDINC128(context->bitcount, len << 3);
/* Clean up: */
usedspace = freespace = 0;
return;
}
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE64(context->buffer[j],context->buffer[j]);
}
#endif
sha512_Transform(context->state, context->buffer, context->state);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
}
if (len > 0) {
/* There's left-overs, so save 'em */
MEMCPY_BCOPY(context->buffer, data, len);
ADDINC128(context->bitcount, len << 3);
}
/* Clean up: */
usedspace = freespace = 0;
}
static void sha512_Last(SHA512_CTX* context) {
unsigned int usedspace = 0;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
/* Begin padding with a 1 bit: */
((uint8_t*)context->buffer)[usedspace++] = 0x80;
if (usedspace > SHA512_SHORT_BLOCK_LENGTH) {
memzero(((uint8_t*)context->buffer) + usedspace, SHA512_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 16; j++) {
REVERSE64(context->buffer[j],context->buffer[j]);
}
#endif
/* Do second-to-last transform: */
sha512_Transform(context->state, context->buffer, context->state);
/* And prepare the last transform: */
usedspace = 0;
}
/* Set-up for the last transform: */
memzero(((uint8_t*)context->buffer) + usedspace, SHA512_SHORT_BLOCK_LENGTH - usedspace);
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
for (int j = 0; j < 14; j++) {
REVERSE64(context->buffer[j],context->buffer[j]);
}
#endif
/* Store the length of input data (in bits): */
context->buffer[14] = context->bitcount[1];
context->buffer[15] = context->bitcount[0];
/* Final transform: */
sha512_Transform(context->state, context->buffer, context->state);
}
void sha512_Final(SHA512_CTX* context, sha2_byte digest[SHA512_DIGEST_LENGTH]) {
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
sha512_Last(context);
/* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
for (int j = 0; j < 8; j++) {
REVERSE64(context->state[j],context->state[j]);
}
#endif
MEMCPY_BCOPY(digest, context->state, SHA512_DIGEST_LENGTH);
}
/* Zero out state data */
memzero(context, sizeof(SHA512_CTX));
}
char *sha512_End(SHA512_CTX* context, char buffer[SHA512_DIGEST_STRING_LENGTH]) {
sha2_byte digest[SHA512_DIGEST_LENGTH] = {0}, *d = digest;
int i = 0;
if (buffer != (char*)0) {
sha512_Final(context, digest);
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
memzero(context, sizeof(SHA512_CTX));
}
memzero(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
void sha512_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA512_DIGEST_LENGTH]) {
SHA512_CTX context = {0};
sha512_Init(&context);
sha512_Update(&context, data, len);
sha512_Final(&context, digest);
}
void sha384_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA384_DIGEST_LENGTH]) {
uint8_t full_digest[SHA512_DIGEST_LENGTH] = {0};
SHA512_CTX context = {0};
sha384_Init(&context);
sha512_Update(&context, data, len);
sha512_Final(&context, full_digest);
memcpy(digest, full_digest, SHA384_DIGEST_LENGTH);
memzero(full_digest, sizeof(full_digest));
}
char* sha512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA512_CTX context = {0};
sha512_Init(&context);
sha512_Update(&context, data, len);
return sha512_End(&context, digest);
}