1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-22 14:28:07 +00:00
trezor-firmware/crypto/tests/test_bignum.py
2020-06-26 12:29:21 +02:00

1033 lines
24 KiB
Python
Executable File

#!/usr/bin/python
import ctypes
import itertools
import os
import random
from ctypes import (
c_bool,
c_int,
c_size_t,
c_uint,
c_uint8,
c_uint16,
c_uint32,
c_uint64,
)
from math import floor, log, sqrt
import pytest
dir = os.path.abspath(os.path.dirname(__file__))
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, "libtrezor-crypto.so"))
limbs_number = 9
bits_per_limb = 29
@pytest.fixture()
def prime(request):
return 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
@pytest.fixture(params=range(limbs_number * bits_per_limb))
def bignum_bit_index(request):
return request.param
max_decimal_digits = floor(limbs_number * bits_per_limb * log(2, 10))
@pytest.fixture(params=range(max_decimal_digits))
def bignum_decimal_digit_index(request):
return request.param
iterations = int(os.environ.get("ITERS", 1000))
@pytest.fixture(params=range(iterations))
def r(request):
return Random(request.param)
def implication(p, c):
return not p or c
def uint32_p_to_int(pointer):
return pointer.contents.value
def uint32_p():
return ctypes.POINTER(c_int)(c_int())
limb_type = c_uint32
def bignum(limbs_number=limbs_number):
return (limbs_number * limb_type)()
def limbs_to_bignum(limbs):
return (limbs_number * limb_type)(*limbs)
def int_to_bignum(number, limbs_number=limbs_number):
assert number >= 0
assert number.bit_length() <= limbs_number * bits_per_limb
bn = (limbs_number * limb_type)()
for i in range(limbs_number):
bn[i] = number % 2 ** bits_per_limb
number //= 2 ** bits_per_limb
return bn
def bignum_to_int(bignum, limbs_number=limbs_number):
number = 0
for i in reversed(range(limbs_number)):
number *= 2 ** bits_per_limb
number += bignum[i]
return number
def raw_number():
return (32 * c_uint8)()
def raw_number_to_integer(raw_number, endianess):
return int.from_bytes(raw_number, endianess)
def integer_to_raw_number(number, endianess):
return (32 * c_uint8)(*number.to_bytes(32, endianess))
def bignum_is_normalised(bignum):
for limb in bignum:
if limb > 2 ** bits_per_limb:
return False
return True
def number_is_partly_reduced(number, prime):
return number < 2 * prime
def number_is_fully_reduced(number, prime):
return number < prime
class Random(random.Random):
def rand_int_normalized(self):
return self.randrange(0, 2 ** (limbs_number * bits_per_limb))
def rand_int_256(self):
return self.randrange(0, 2 ** 256)
def rand_int_reduced(self, p):
return self.randrange(0, 2 * p)
def rand_int_bitsize(self, bitsize):
return self.randrange(0, 2 ** bitsize)
def rand_bit_index(self):
return self.randrange(0, limbs_number * bits_per_limb)
def rand_bignum(self, limbs_number=limbs_number):
return (limb_type * limbs_number)(
*[self.randrange(0, 256 ** 4) for _ in range(limbs_number)]
)
def assert_bn_read_be(in_number):
raw_in_number = integer_to_raw_number(in_number, "big")
bn_out_number = bignum()
lib.bn_read_be(raw_in_number, bn_out_number)
out_number = bignum_to_int(bn_out_number)
assert bignum_is_normalised(bn_out_number)
assert out_number == in_number
def assert_bn_read_le(in_number):
raw_in_number = integer_to_raw_number(in_number, "little")
bn_out_number = bignum()
lib.bn_read_le(raw_in_number, bn_out_number)
out_number = bignum_to_int(bn_out_number)
assert bignum_is_normalised(bn_out_number)
assert out_number == in_number
def assert_bn_write_be(in_number):
bn_in_number = int_to_bignum(in_number)
raw_out_number = raw_number()
lib.bn_write_be(bn_in_number, raw_out_number)
out_number = raw_number_to_integer(raw_out_number, "big")
assert out_number == in_number
def assert_bn_write_le(in_number):
bn_in_number = int_to_bignum(in_number)
raw_out_number = raw_number()
lib.bn_write_le(bn_in_number, raw_out_number)
out_number = raw_number_to_integer(raw_out_number, "little")
assert out_number == in_number
def assert_bn_read_uint32(x):
bn_out_number = bignum()
lib.bn_read_uint32(c_uint32(x), bn_out_number)
out_number = bignum_to_int(bn_out_number)
assert bignum_is_normalised(bn_out_number)
assert out_number == x
def assert_bn_read_uint64(x):
bn_out_number = bignum()
lib.bn_read_uint64(c_uint64(x), bn_out_number)
out_number = bignum_to_int(bn_out_number)
assert bignum_is_normalised(bn_out_number)
assert out_number == x
def assert_bn_bitcount(x):
bn_x = int_to_bignum(x)
return_value = lib.bn_bitcount(bn_x)
assert return_value == x.bit_length()
def assert_bn_digitcount(x):
bn_x = int_to_bignum(x)
return_value = lib.bn_digitcount(bn_x)
assert return_value == len(str(x))
def assert_bn_zero():
bn_x = bignum()
lib.bn_zero(bn_x)
x = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x == 0
def assert_bn_one():
bn_x = bignum()
lib.bn_one(bn_x)
x = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x == 1
def assert_bn_is_zero(x):
bn_x = int_to_bignum(x)
return_value = lib.bn_is_zero(bn_x)
assert return_value == (x == 0)
def assert_bn_is_one(x):
bn_x = int_to_bignum(x)
return_value = lib.bn_is_one(bn_x)
assert return_value == (x == 1)
def assert_bn_is_less(x, y):
bn_x = int_to_bignum(x)
bn_y = int_to_bignum(y)
return_value = lib.bn_is_less(bn_x, bn_y)
assert return_value == (x < y)
def assert_bn_is_equal(x, y):
bn_x = int_to_bignum(x)
bn_y = int_to_bignum(y)
return_value = lib.bn_is_equal(bn_x, bn_y)
assert return_value == (x == y)
def assert_bn_cmov(cond, truecase, falsecase):
bn_res = bignum()
bn_truecase = int_to_bignum(truecase)
bn_falsecase = int_to_bignum(falsecase)
lib.bn_cmov(bn_res, c_uint32(cond), bn_truecase, bn_falsecase)
res = bignum_to_int(bn_res)
assert res == truecase if cond else falsecase
def assert_bn_cnegate(cond, x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_cnegate(c_uint32(cond), bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new % prime == -x_old % prime if cond else x_old % prime
def assert_bn_lshift(x_old):
bn_x = int_to_bignum(x_old)
lib.bn_lshift(bn_x)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x_new == (x_old << 1)
def assert_bn_rshift(x_old):
bn_x = int_to_bignum(x_old)
lib.bn_rshift(bn_x)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x_new == (x_old >> 1)
def assert_bn_setbit(x_old, i):
bn_x = int_to_bignum(x_old)
lib.bn_setbit(bn_x, c_uint16(i))
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x_new == x_old | (1 << i)
def assert_bn_clearbit(x_old, i):
bn_x = int_to_bignum(x_old)
lib.bn_clearbit(bn_x, c_uint16(i))
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x_new == x_old & ~(1 << i)
def assert_bn_testbit(x_old, i):
bn_x = int_to_bignum(x_old)
return_value = lib.bn_testbit(bn_x, c_uint16(i))
assert return_value == x_old >> i & 1
def assert_bn_xor(x, y):
bn_res = bignum()
bn_x = int_to_bignum(x)
bn_y = int_to_bignum(y)
lib.bn_xor(bn_res, bn_x, bn_y)
res = bignum_to_int(bn_res)
assert res == x ^ y
def assert_bn_mult_half(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_mult_half(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert implication(
number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
)
assert x_new == (x_old + prime) >> 1 if x_old & 1 else x_old >> 1
def assert_bn_mult_k(x_old, k, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_mult_k(bn_x, c_uint8(k), bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new == (x_old * k) % prime
def assert_bn_mod(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_mod(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_fully_reduced(x_new, prime)
assert x_new == x_old % prime
def assert_bn_multiply_long(k_old, x_old):
bn_k = int_to_bignum(k_old)
bn_x = int_to_bignum(x_old)
bn_res = bignum(2 * limbs_number)
lib.bn_multiply_long(bn_k, bn_x, bn_res)
res = bignum_to_int(bn_res, 2 * limbs_number)
assert res == k_old * x_old
def assert_bn_multiply_reduce_step(res_old, prime, d):
bn_res = int_to_bignum(res_old, 2 * limbs_number)
bn_prime = int_to_bignum(prime)
lib.bn_multiply_reduce_step(bn_res, bn_prime, d)
res_new = bignum_to_int(bn_res, 2 * limbs_number)
assert bignum_is_normalised(bn_res)
assert res_new < 2 * prime * 2 ** (d * bits_per_limb)
def assert_bn_multiply(k, x_old, prime):
bn_k = int_to_bignum(k)
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_multiply(bn_k, bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new == (k * x_old) % prime
def assert_bn_fast_mod(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_fast_mod(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new % prime == x_old % prime
def assert_bn_fast_mod_bn(bn_x, prime):
bn_x
x_old = bignum_to_int(bn_x)
bn_prime = int_to_bignum(prime)
lib.bn_fast_mod(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new % prime == x_old % prime
def assert_bn_power_mod(x, e, prime):
bn_x = int_to_bignum(x)
bn_e = int_to_bignum(e)
bn_prime = int_to_bignum(prime)
bn_res_new = bignum()
lib.bn_power_mod(bn_x, bn_e, bn_prime, bn_res_new)
res_new = bignum_to_int(bn_res_new)
assert bignum_is_normalised(bn_res_new)
assert number_is_partly_reduced(res_new, prime)
assert res_new % prime == pow(x, e, prime)
def assert_bn_sqrt(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_sqrt(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_fully_reduced(x_new, prime)
assert x_new ** 2 % prime == x_old % prime
def assert_inverse_mod_power_two(x, m):
return_value = lib.inverse_mod_power_two(c_uint32(x), c_uint32(m))
assert return_value * x % 2 ** m == 1
def assert_bn_divide_base(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_divide_base(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert implication(
number_is_fully_reduced(x_old, prime), number_is_fully_reduced(x_new, prime)
)
assert implication(
number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
)
assert x_new * 2 ** bits_per_limb % prime == x_old % prime
def assert_bn_inverse(x_old, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_inverse(bn_x, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_fully_reduced(x_new, prime)
assert (x_old == 0 and x_new == 0) or (x_old != 0 and (x_old * x_new) % prime == 1)
def assert_bn_normalize(bn_x):
x_old = bignum_to_int(bn_x)
lib.bn_normalize(bn_x)
x_new = bignum_to_int(bn_x)
assert x_new == x_old % 2 ** (bits_per_limb * limbs_number)
assert bignum_is_normalised(bn_x)
def assert_bn_add(x_old, y):
bn_x = int_to_bignum(x_old)
bn_y = int_to_bignum(y)
lib.bn_add(bn_x, bn_y)
x_new = bignum_to_int(bn_x)
y = bignum_to_int(bn_y)
assert bignum_is_normalised(bn_x)
assert x_new == x_old + y
def assert_bn_addmod(x_old, y, prime):
bn_x = int_to_bignum(x_old)
bn_y = int_to_bignum(y)
bn_prime = int_to_bignum(prime)
lib.bn_addmod(bn_x, bn_y, bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert number_is_partly_reduced(x_new, prime)
assert x_new % prime == (x_old + y) % prime
def assert_bn_addi(x_old, y):
bn_x = int_to_bignum(x_old)
lib.bn_addi(bn_x, c_uint32(y))
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert x_new == x_old + y
def assert_bn_subi(x_old, y, prime):
bn_x = int_to_bignum(x_old)
bn_prime = int_to_bignum(prime)
lib.bn_subi(bn_x, c_uint32(y), bn_prime)
x_new = bignum_to_int(bn_x)
assert bignum_is_normalised(bn_x)
assert implication(
number_is_fully_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
)
assert x_new % prime == (x_old - y) % prime
def assert_bn_subtractmod(x, y, prime):
bn_x = int_to_bignum(x)
bn_y = int_to_bignum(y)
bn_prime = int_to_bignum(prime)
bn_res = bignum()
lib.bn_subtractmod(bn_x, bn_y, bn_res, bn_prime)
res = bignum_to_int(bn_res)
assert bignum_is_normalised(bn_x)
assert res % prime == (x - y) % prime
def assert_bn_subtract(x, y):
bn_x = int_to_bignum(x)
bn_y = int_to_bignum(y)
bn_res = bignum()
lib.bn_subtract(bn_x, bn_y, bn_res)
res = bignum_to_int(bn_res)
assert bignum_is_normalised(bn_x)
assert res == x - y
def assert_bn_long_division(x, d):
bn_x = int_to_bignum(x)
bn_q = bignum()
uint32_p_r = uint32_p()
lib.bn_long_division(bn_x, d, bn_q, uint32_p_r)
r = uint32_p_to_int(uint32_p_r)
q = bignum_to_int(bn_q)
assert bignum_is_normalised(bn_q)
assert q == x // d
assert r == x % d
def assert_bn_divmod58(x_old):
bn_x = int_to_bignum(x_old)
uint32_p_r = uint32_p()
lib.bn_divmod58(bn_x, uint32_p_r)
x_new = bignum_to_int(bn_x)
r = uint32_p_to_int(uint32_p_r)
assert bignum_is_normalised(bn_x)
assert x_new == x_old // 58
assert r == x_old % 58
def assert_bn_divmod1000(x_old):
bn_x = int_to_bignum(x_old)
uint32_p_r = uint32_p()
lib.bn_divmod1000(bn_x, uint32_p_r)
x_new = bignum_to_int(bn_x)
r = uint32_p_to_int(uint32_p_r)
assert bignum_is_normalised(bn_x)
assert x_new == x_old // 1000
assert r == x_old % 1000
def assert_bn_divmod10(x_old):
bn_x = int_to_bignum(x_old)
uint32_p_r = uint32_p()
lib.bn_divmod10(bn_x, uint32_p_r)
x_new = bignum_to_int(bn_x)
r = uint32_p_to_int(uint32_p_r)
assert bignum_is_normalised(bn_x)
assert x_new == x_old // 10
assert r == x_old % 10
def assert_bn_format(x, prefix, suffix, decimals, exponent, trailing):
def format(amount, prefix, suffix, decimals, exponent, trailing):
if exponent >= 0:
amount *= 10 ** exponent
else:
amount //= 10 ** (-exponent)
d = pow(10, decimals)
if decimals:
output = "%d.%0*d" % (amount // d, decimals, amount % d)
if not trailing:
output = output.rstrip("0").rstrip(".")
else:
output = "%d" % (amount // d)
return prefix + output + suffix
def string_to_char_p(string):
return ctypes.create_string_buffer(string.encode("ascii"))
def char_p_to_string(pointer):
return str(pointer.value, "ascii")
bn_x = int_to_bignum(x)
output_length = 100
output = string_to_char_p("?" * output_length)
return_value = lib.bn_format(
bn_x,
string_to_char_p(prefix),
string_to_char_p(suffix),
c_uint(decimals),
c_int(exponent),
c_bool(trailing),
output,
c_size_t(output_length),
)
correct_output = format(x, prefix, suffix, decimals, exponent, trailing)
correct_return_value = len(correct_output)
if len(correct_output) >= output_length:
correct_output = ""
correct_return_value = 0
assert char_p_to_string(output) == correct_output
assert return_value == correct_return_value
def test_bn_read_be(r):
assert_bn_read_be(r.rand_int_256())
def test_bn_read_le(r):
assert_bn_read_le(r.rand_int_256())
def test_bn_write_be(r):
assert_bn_write_be(r.rand_int_256())
def test_bn_write_le(r):
assert_bn_write_le(r.rand_int_256())
def test_bn_read_uint32(r):
assert_bn_read_uint32(r.rand_int_bitsize(32))
def test_bn_read_uint64(r):
assert_bn_read_uint64(r.rand_int_bitsize(64))
def test_bn_bitcount_1(r):
assert_bn_bitcount(r.rand_int_normalized())
def test_bn_bitcount_2(bignum_bit_index):
assert_bn_bitcount(2 ** bignum_bit_index - 1)
assert_bn_bitcount(2 ** bignum_bit_index)
def test_bn_digitcount_1(r):
assert_bn_digitcount(r.rand_int_normalized())
def test_bn_digitcount_2(bignum_decimal_digit_index):
assert_bn_digitcount(10 ** bignum_decimal_digit_index - 1)
assert_bn_digitcount(10 ** bignum_decimal_digit_index)
def test_bn_zero():
assert_bn_zero()
def test_bn_one():
assert_bn_one()
def test_bn_is_zero_1():
assert_bn_is_zero(0)
assert_bn_is_zero(1)
def test_bn_is_zero_2(bignum_bit_index):
assert_bn_is_zero(2 ** bignum_bit_index)
def test_bn_is_one_1():
assert_bn_is_one(0)
assert_bn_is_one(1)
def test_bn_is_one_2(bignum_bit_index):
assert_bn_is_one(2 ** bignum_bit_index)
def test_bn_is_less_1(r):
a = r.rand_int_normalized()
b = r.rand_int_normalized()
assert_bn_is_less(a, a)
assert_bn_is_less(a, b)
assert_bn_is_less(b, a)
def test_bn_is_less_2(r):
a = r.rand_int_normalized()
i = r.rand_bit_index()
b = a ^ 2 ** i
assert_bn_is_less(a, b)
def test_bn_is_less_3():
assert_bn_is_less(0, 0)
assert_bn_is_less(1, 0)
assert_bn_is_less(0, 1)
assert_bn_is_less(1, 1)
def test_bn_is_equal_1(r):
a = r.rand_int_normalized()
b = r.rand_int_normalized()
assert_bn_is_equal(a, a)
assert_bn_is_equal(a, b)
def test_bn_is_equal_2():
assert_bn_is_equal(0, 0)
assert_bn_is_equal(1, 0)
assert_bn_is_equal(0, 1)
assert_bn_is_equal(1, 1)
def test_bn_cmov(r):
a = r.rand_int_normalized()
b = r.rand_int_normalized()
assert_bn_cmov(0, a, b)
assert_bn_cmov(1, a, b)
def test_bn_cnegate(r, prime):
a = r.rand_int_reduced(prime)
assert_bn_cnegate(0, a, prime)
assert_bn_cnegate(1, a, prime)
def test_bn_lshift(r):
assert_bn_lshift(r.rand_int_normalized() // 2)
def test_bn_rshift(r):
assert_bn_rshift(r.rand_int_normalized())
def test_bn_testbit(r):
assert_bn_testbit(r.rand_int_normalized(), r.rand_bit_index())
def test_bn_setbit(r):
assert_bn_setbit(r.rand_int_normalized(), r.rand_bit_index())
def test_bn_clearbit(r):
assert_bn_clearbit(r.rand_int_normalized(), r.rand_bit_index())
def test_bn_xor(r):
assert_bn_xor(r.rand_int_normalized(), r.rand_int_normalized())
def test_bn_mult_half_1(r, prime):
assert_bn_mult_half(r.rand_int_reduced(prime), prime)
def test_bn_mult_half_2(r, prime):
assert_bn_mult_half(r.rand_int_normalized(), prime)
def test_bn_mult_k(r, prime):
assert_bn_mult_k(r.rand_int_normalized(), r.randrange(9), prime)
def test_bn_mod_1(r, prime):
assert_bn_mod(r.rand_int_reduced(prime), prime)
def test_bn_mod_2(r, prime):
for x in [
0,
1,
2,
prime - 2,
prime - 1,
prime,
prime + 1,
prime + 2,
2 * prime - 2,
2 * prime - 1,
]:
assert_bn_mod(x, prime)
def test_bn_multiply_long(r, prime):
x = r.randrange(floor(sqrt(2 ** 519)))
k = r.randrange(floor(sqrt(2 ** 519)))
assert_bn_multiply_long(k, x)
def test_bn_multiply_reduce_step(r, prime):
k = r.randrange(0, limbs_number)
res = r.randrange(2 ** (256 + 29 * k + 31))
assert_bn_multiply_reduce_step(res, prime, k)
def test_bn_multiply(r, prime):
x = r.randrange(floor(sqrt(2 ** 519)))
k = r.randrange(floor(sqrt(2 ** 519)))
assert_bn_multiply(k, x, prime)
def test_bn_fast_mod_1(r, prime):
assert_bn_fast_mod(r.rand_int_normalized(), prime)
def test_bn_fast_mod_2(r, prime):
bn_x = r.rand_bignum()
assert_bn_fast_mod_bn(bn_x, prime)
def test_bn_power_mod(r, prime):
x = r.rand_int_bitsize(259)
e = r.rand_int_normalized()
assert_bn_power_mod(x, e, prime)
def test_bn_sqrt_1(prime):
assert_bn_sqrt(0, prime)
assert_bn_sqrt(1, prime)
def test_bn_sqrt_2(r, prime):
def is_quadratic_residuum(x, p):
return pow(x, (p - 1) // 2, p) == 1
while True:
x = r.rand_int_bitsize(259)
if is_quadratic_residuum(x, prime):
break
assert_bn_sqrt(x, prime)
def test_inverse_mod_power_two(r):
m = r.randrange(1, 33)
i = r.randrange(1, 2 ** 29, 2)
assert_inverse_mod_power_two(i, m)
def test_bn_divide_base(r, prime):
assert_bn_divide_base(r.rand_int_256(), prime)
def test_bn_inverse_1(prime):
assert_bn_inverse(0, prime)
assert_bn_inverse(1, prime)
def test_bn_inverse_2(r, prime):
from math import gcd
while True:
n = r.randrange(0, prime)
if gcd(n, prime) == 1:
break
assert_bn_inverse(n, prime)
def test_bn_normalize(r):
assert_bn_normalize(r.rand_bignum())
def test_bn_add_1(r):
assert_bn_add(r.rand_int_256(), r.rand_int_256())
def test_bn_add_2(r):
while True:
a = r.rand_int_normalized()
b = r.rand_int_normalized()
if a + b < 2 ** (limbs_number * bits_per_limb):
break
assert_bn_add(a, b)
def test_bn_add_3():
a = Random().rand_int_normalized()
b = 2 ** (limbs_number * bits_per_limb) - 1 - a
assert_bn_add(a, b)
def test_bn_addmod(r, prime):
assert_bn_addmod(r.rand_int_normalized(), r.rand_int_normalized(), prime)
def test_bn_addi_1(r):
while True:
a = r.rand_int_normalized()
b = r.randrange(2 ** 32 - 2 ** bits_per_limb + 1)
if a + b < 2 ** (limbs_number * bits_per_limb):
break
assert_bn_addi(a, b)
def test_bn_addi_2():
b = 2 ** 32 - 2 ** bits_per_limb
a = 2 ** (limbs_number * bits_per_limb) - 1 - b
assert_bn_addi(a, b)
def test_bn_subi_1(r, prime):
while True:
a = r.rand_int_normalized()
b = r.randrange(prime % 2 ** bits_per_limb)
if a + prime - b < 2 ** (limbs_number * bits_per_limb):
break
assert_bn_subi(a, b, prime)
def test_bn_subi_2(prime):
b = (prime % 2 ** bits_per_limb) - 1
a = 2 ** (limbs_number * bits_per_limb) - 1 - prime + b
assert_bn_subi(a, b, prime)
def test_bn_subtractmod_1(r, prime):
assert_bn_subtractmod(r.rand_int_256(), r.rand_int_256(), prime)
def test_bn_subtractmod_2(r, prime):
while True:
a = r.rand_int_normalized()
b = r.rand_int_reduced(prime)
if a + 2 * prime - b < 2 ** (limbs_number * bits_per_limb):
break
assert_bn_subtractmod(a, b, prime)
def test_bn_subtractmod_3(prime):
b = 2 * prime - 1
a = 2 ** (limbs_number * bits_per_limb) - 1 - (2 * prime - b)
assert_bn_subtractmod(a, b, prime)
def test_bn_subtract_1(r):
a = r.rand_int_256()
b = r.rand_int_256()
if a < b:
a, b = b, a
assert_bn_subtract(a, b)
def test_bn_subtract_2(r):
a = r.rand_int_normalized()
b = r.rand_int_normalized()
if a < b:
a, b = b, a
assert_bn_subtract(a, b)
def test_bn_long_division(r):
x = r.rand_int_normalized()
d = r.randrange(1, 61304 + 1)
assert_bn_long_division(x, d)
def test_bn_divmod58(r):
x = r.rand_int_normalized()
assert_bn_divmod58(x)
def test_bn_divmod1000(r):
x = r.rand_int_normalized()
assert_bn_divmod1000(x)
def test_bn_divmod10(r):
x = r.rand_int_normalized()
assert_bn_divmod10(x)
@pytest.mark.parametrize(
"decimals,exponent,trailing,prefix,suffix,value",
itertools.product(
range(0, 5),
range(-5, 5),
[True, False],
["", "prefix"],
["", "suffix"],
[123, 120],
),
)
def test_bn_format(decimals, exponent, trailing, prefix, suffix, value):
assert_bn_format(value, prefix, suffix, decimals, exponent, trailing)