You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
trezor-firmware/bignum.c

566 lines
13 KiB

/**
* Copyright (c) 2013 Tomas Dzetkulic
* Copyright (c) 2013 Pavol Rusnak
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "bignum.h"
#include "secp256k1.h"
inline uint32_t read_be(const uint8_t *data)
{
return (((uint32_t)data[0]) << 24) |
(((uint32_t)data[1]) << 16) |
(((uint32_t)data[2]) << 8) |
(((uint32_t)data[3]));
}
inline void write_be(uint8_t *data, uint32_t x)
{
data[0] = x >> 24;
data[1] = x >> 16;
data[2] = x >> 8;
data[3] = x;
}
void bn_read_be(const uint8_t *in_number, bignum256 *out_number)
{
int i;
uint64_t temp = 0;
for (i = 0; i < 8; i++) {
temp += (((uint64_t)read_be(in_number + (7 - i) * 4)) << (2 * i));
out_number->val[i]= temp & 0x3FFFFFFF;
temp >>= 30;
}
out_number->val[8] = temp;
}
void bn_write_be(const bignum256 *in_number, uint8_t *out_number)
{
int i, shift = 30 + 16 - 32;
uint64_t temp = in_number->val[8];
for (i = 0; i < 8; i++) {
temp <<= 30;
temp |= in_number->val[7 - i];
write_be(out_number + i * 4, temp >> shift);
shift -= 2;
}
}
void bn_zero(bignum256 *a)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] = 0;
}
}
int bn_is_zero(const bignum256 *a)
{
int i;
for (i = 0; i < 9; i++) {
if (a->val[i] != 0) return 0;
}
return 1;
}
int bn_is_less(const bignum256 *a, const bignum256 *b)
{
int i;
for (i = 8; i >= 0; i--) {
if (a->val[i] < b->val[i]) return 1;
if (a->val[i] > b->val[i]) return 0;
}
return 0;
}
int bn_is_equal(const bignum256 *a, const bignum256 *b) {
int i;
for (i = 0; i < 9; i++) {
if (a->val[i] != b->val[i]) return 0;
}
return 1;
}
int bn_bitlen(const bignum256 *a) {
int i = 8, j;
while (i >= 0 && a->val[i] == 0) i--;
if (i == -1) return 0;
j = 29;
while ((a->val[i] & (1 << j)) == 0) j--;
return i * 30 + j + 1;
}
void bn_lshift(bignum256 *a)
{
int i;
for (i = 8; i > 0; i--) {
a->val[i] = ((a->val[i] << 1) & 0x3FFFFFFF) | ((a->val[i - 1] & 0x20000000) >> 29);
}
a->val[0] = (a->val[0] << 1) & 0x3FFFFFFF;
}
void bn_rshift(bignum256 *a)
{
int i;
for (i = 0; i < 8; i++) {
a->val[i] = (a->val[i] >> 1) | ((a->val[i + 1] & 1) << 29);
}
a->val[8] >>= 1;
}
// assumes x < 2*prime, result < prime
void bn_mod(bignum256 *x, const bignum256 *prime)
{
int i = 8;
uint32_t temp;
// compare numbers
while (i >= 0 && prime->val[i] == x->val[i]) i--;
// if equal
if (i == -1) {
// set x to zero
bn_zero(x);
} else {
// if x is greater
if (x->val[i] > prime->val[i]) {
// substract p from x
temp = 0x40000000u;
for (i = 0; i < 9; i++) {
temp += x->val[i] - prime->val[i];
x->val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
temp += 0x3FFFFFFFu;
}
}
}
}
// a = a + b
void bn_addi(bignum256 *a, uint32_t b)
{
uint64_t t = a->val[0];
t += b;
a->val[0] = t & 0x3FFFFFFFu;
t >>= 30;
a->val[1] += t;
}
// a = a * b
void bn_muli(bignum256 *a, uint32_t b)
{
uint64_t t = 0;
int i;
for (i = 0; i < 8; i++) {
t = (uint64_t)(a->val[i]) * b + t;
a->val[i] = t & 0x3FFFFFFFu;
t >>= 30;
}
a->val[8] += t;
}
// x = k * x
// both inputs and result may be bigger than prime but not bigger than 2 * prime
void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime)
{
int i, j;
uint64_t temp = 0;
uint32_t res[18], coef;
// compute lower half of long multiplication
for (i = 0; i < 9; i++)
{
for (j = 0; j <= i; j++) {
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
// compute upper half
for (; i < 17; i++)
{
for (j = i - 8; j < 9 ; j++) {
temp += k->val[j] * (uint64_t)x->val[i - j];
}
res[i] = temp & 0x3FFFFFFFu;
temp >>= 30;
}
res[17] = temp;
// compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime
for (i = 16; i >= 8; i--) {
// estimate (res / prime)
coef = (res[i] >> 16) + (res[i + 1] << 14);
// substract (coef * prime) from res
temp = 0x1000000000000000llu + res[i - 8] - prime->val[0] * (uint64_t)coef;
res[i - 8] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
temp += 0xFFFFFFFC0000000llu + res[i - 8 + j] - prime->val[j] * (uint64_t)coef;
res[i - 8 + j] = temp & 0x3FFFFFFF;
}
}
// store the result
for (i = 0; i < 9; i++) {
x->val[i] = res[i];
}
}
// result is smaller than 2*prime
void bn_fast_mod(bignum256 *x, const bignum256 *prime)
{
int j;
uint32_t coef;
uint64_t temp;
coef = x->val[8] >> 16;
if (!coef) return;
// substract (coef * prime) from x
temp = 0x1000000000000000llu + x->val[0] - prime->val[0] * (uint64_t)coef;
x->val[0] = temp & 0x3FFFFFFF;
for (j = 1; j < 9; j++) {
temp >>= 30;
temp += 0xFFFFFFFC0000000llu + x->val[j] - prime->val[j] * (uint64_t)coef;
x->val[j] = temp & 0x3FFFFFFF;
}
}
// square root of x = x^((p+1)/4)
// http://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus
void bn_sqrt(bignum256 *x, const bignum256 *prime)
{
uint32_t i, j, limb;
bignum256 res, p;
bn_zero(&res); res.val[0] = 1;
memcpy(&p, prime, sizeof(bignum256));
p.val[0] += 1;
bn_rshift(&p);
bn_rshift(&p);
for (i = 0; i < 9; i++) {
limb = p.val[i];
for (j = 0; j < 30; j++) {
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
}
#if ! USE_INVERSE_FAST
#if USE_PRECOMPUTED_IV
#warning USE_PRECOMPUTED_IV will not be used
#endif
// in field G_prime, small but slow
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
uint32_t i, j, limb;
bignum256 res;
bn_zero(&res); res.val[0] = 1;
for (i = 0; i < 9; i++) {
limb = prime->val[i];
// this is not enough in general but fine for secp256k1 because prime->val[0] > 1
if (i == 0) limb -= 2;
for (j = 0; j < 30; j++) {
if (i == 8 && limb == 0) break;
if (limb & 1) {
bn_multiply(x, &res, prime);
}
limb >>= 1;
bn_multiply(x, x, prime);
}
}
bn_mod(&res, prime);
memcpy(x, &res, sizeof(bignum256));
}
#else
// in field G_prime, big but fast
void bn_inverse(bignum256 *x, const bignum256 *prime)
{
int i, j, k, len1, len2, mask;
uint32_t u[9], v[9], s[10], r[10], temp, temp2;
bn_fast_mod(x, prime);
bn_mod(x, prime);
for (i = 0; i < 9; i++) {
u[i] = prime->val[i];
v[i] = x->val[i];
}
len1 = 9;
s[0] = 1;
r[0] = 0;
len2 = 1;
k = 0;
for (;;) {
for (i = 0; i < len1; i++) {
if (v[i]) break;
}
if (i == len1) break;
for (;;) {
for (i = 0; i < 30; i++) {
if (u[0] & (1 << i)) break;
}
if (i == 0) break;
mask = (1 << i) - 1;
for (j = 0; j + 1 < len1; j++) {
u[j] = (u[j] >> i) | ((u[j + 1] & mask) << (30 - i));
}
u[j] = (u[j] >> i);
mask = (1 << (30 - i)) - 1;
s[len2] = s[len2 - 1] >> (30 - i);
for (j = len2 - 1; j > 0; j--) {
s[j] = (s[j - 1] >> (30 - i)) | ((s[j] & mask) << i);
}
s[0] = (s[0] & mask) << i;
if (s[len2]) {
r[len2] = 0;
len2++;
}
k += i;
}
for (;;) {
for (i = 0; i < 30; i++) {
if (v[0] & (1 << i)) break;
}
if (i == 0) break;
mask = (1 << i) - 1;
for (j = 0; j + 1 < len1; j++) {
v[j] = (v[j] >> i) | ((v[j + 1] & mask) << (30 - i));
}
v[j] = (v[j] >> i);
mask = (1 << (30 - i)) - 1;
r[len2] = r[len2 - 1] >> (30 - i);
for (j = len2 - 1; j > 0; j--) {
r[j] = (r[j - 1] >> (30 - i)) | ((r[j] & mask) << i);
}
r[0] = (r[0] & mask) << i;
if (r[len2]) {
s[len2] = 0;
len2++;
}
k += i;
}
i = len1 - 1;
while (i > 0 && u[i] == v[i]) i--;
if (u[i] > v[i]) {
temp = 0x40000000u + u[0] - v[0];
u[0] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
for (i = 1; i < len1; i++) {
temp += 0x3FFFFFFFu + u[i] - v[i];
u[i - 1] += (temp & 1) << 29;
u[i] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
}
temp = temp2 = 0;
for (i = 0; i < len2; i++) {
temp += s[i] + r[i];
temp2 += s[i] << 1;
r[i] = temp & 0x3FFFFFFF;
s[i] = temp2 & 0x3FFFFFFF;
temp >>= 30;
temp2 >>= 30;
}
if (temp != 0 || temp2 != 0) {
r[len2] = temp;
s[len2] = temp2;
len2++;
}
} else {
temp = 0x40000000u + v[0] - u[0];
v[0] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
for (i = 1; i < len1; i++) {
temp += 0x3FFFFFFFu + v[i] - u[i];
v[i - 1] += (temp & 1) << 29;
v[i] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
}
temp = temp2 = 0;
for (i = 0; i < len2; i++) {
temp += s[i] + r[i];
temp2 += r[i] << 1;
s[i] = temp & 0x3FFFFFFF;
r[i] = temp2 & 0x3FFFFFFF;
temp >>= 30;
temp2 >>= 30;
}
if (temp != 0 || temp2 != 0) {
s[len2] = temp;
r[len2] = temp2;
len2++;
}
}
if (u[len1 - 1] == 0 && v[len1 - 1] == 0) len1--;
k++;
}
i = 8;
while (i > 0 && r[i] == prime->val[i]) i--;
if (r[i] >= prime->val[i]) {
temp = 1;
for (i = 0; i < 9; i++) {
temp += 0x3FFFFFFF + r[i] - prime->val[i];
r[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
}
temp = 1;
for (i = 0; i < 9; i++) {
temp += 0x3FFFFFFF + prime->val[i] - r[i];
r[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
int done = 0;
#if USE_PRECOMPUTED_IV
if (prime == &prime256k1) {
for (j = 0; j < 9; j++) {
x->val[j] = r[j];
}
bn_multiply(secp256k1_iv + k - 256, x, prime);
bn_fast_mod(x, prime);
done = 1;
}
#endif
if (!done) {
for (j = 0; j < k; j++) {
if (r[0] & 1) {
temp = r[0] + prime->val[0];
r[0] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
for (i = 1; i < 9; i++) {
temp += r[i] + prime->val[i];
r[i - 1] += (temp & 1) << 29;
r[i] = (temp >> 1) & 0x1FFFFFFF;
temp >>= 30;
}
} else {
for (i = 0; i < 8; i++) {
r[i] = (r[i] >> 1) | ((r[i + 1] & 1) << 29);
}
r[8] = r[8] >> 1;
}
}
for (j = 0; j < 9; j++) {
x->val[j] = r[j];
}
}
}
#endif
void bn_normalize(bignum256 *a) {
int i;
uint32_t tmp = 0;
for (i = 0; i < 9; i++) {
tmp += a->val[i];
a->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
void bn_addmod(bignum256 *a, const bignum256 *b, const bignum256 *prime)
{
int i;
for (i = 0; i < 9; i++) {
a->val[i] += b->val[i];
}
bn_normalize(a);
bn_fast_mod(a, prime);
bn_mod(a, prime);
}
void bn_addmodi(bignum256 *a, uint32_t b, const bignum256 *prime) {
a->val[0] += b;
bn_normalize(a);
bn_fast_mod(a, prime);
bn_mod(a, prime);
}
// res = a - b
// b < 2*prime; result not normalized
void bn_substract(const bignum256 *a, const bignum256 *b, bignum256 *res)
{
int i;
uint32_t temp = 0;
for (i = 0; i < 9; i++) {
temp += a->val[i] + 2u * prime256k1.val[i] - b->val[i];
res->val[i] = temp & 0x3FFFFFFF;
temp >>= 30;
}
}
// res = a - b ; a > b
void bn_substract_noprime(const bignum256 *a, const bignum256 *b, bignum256 *res)
{
int i;
uint32_t tmp = 1;
for (i = 0; i < 9; i++) {
tmp += 0x3FFFFFFF + a->val[i] - b->val[i];
res->val[i] = tmp & 0x3FFFFFFF;
tmp >>= 30;
}
}
// a / 58 = a (+r)
void bn_divmod58(bignum256 *a, uint32_t *r)
{
int i;
uint32_t rem, tmp;
rem = a->val[8] % 58;
a->val[8] /= 58;
for (i = 7; i >= 0; i--) {
// 2^30 == 18512790*58 + 4
tmp = rem * 4 + a->val[i];
a->val[i] = rem * 18512790 + (tmp / 58);
rem = tmp % 58;
}
*r = rem;
}
#if BN_PRINT
void bn_print(const bignum256 *a)
{
printf("%04x", a->val[8] & 0x0000FFFF);
printf("%08x", (a->val[7] << 2) | ((a->val[6] & 0x30000000) >> 28));
printf("%07x", a->val[6] & 0x0FFFFFFF);
printf("%08x", (a->val[5] << 2) | ((a->val[4] & 0x30000000) >> 28));
printf("%07x", a->val[4] & 0x0FFFFFFF);
printf("%08x", (a->val[3] << 2) | ((a->val[2] & 0x30000000) >> 28));
printf("%07x", a->val[2] & 0x0FFFFFFF);
printf("%08x", (a->val[1] << 2) | ((a->val[0] & 0x30000000) >> 28));
printf("%07x", a->val[0] & 0x0FFFFFFF);
}
void bn_print_raw(const bignum256 *a)
{
int i;
for (i = 0; i <= 8; i++) {
printf("0x%08x, ", a->val[i]);
}
}
#endif