mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-04 20:40:55 +00:00
1040 lines
24 KiB
Python
Executable File
1040 lines
24 KiB
Python
Executable File
#!/usr/bin/python
|
|
import ctypes
|
|
import itertools
|
|
import os
|
|
import random
|
|
from ctypes import (
|
|
c_bool,
|
|
c_char,
|
|
c_int,
|
|
c_size_t,
|
|
c_uint,
|
|
c_uint8,
|
|
c_uint16,
|
|
c_uint32,
|
|
c_uint64,
|
|
)
|
|
from math import floor, log, sqrt
|
|
|
|
import pytest
|
|
|
|
dir = os.path.abspath(os.path.dirname(__file__))
|
|
lib = ctypes.cdll.LoadLibrary(os.path.join(dir, "libtrezor-crypto.so"))
|
|
|
|
limbs_number = 9
|
|
bits_per_limb = 29
|
|
|
|
|
|
@pytest.fixture()
|
|
def prime(request):
|
|
return 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
|
|
|
|
|
@pytest.fixture(params=range(limbs_number * bits_per_limb))
|
|
def bignum_bit_index(request):
|
|
return request.param
|
|
|
|
|
|
max_decimal_digits = floor(limbs_number * bits_per_limb * log(2, 10))
|
|
|
|
|
|
@pytest.fixture(params=range(max_decimal_digits))
|
|
def bignum_decimal_digit_index(request):
|
|
return request.param
|
|
|
|
|
|
iterations = int(os.environ.get("ITERS", 1000))
|
|
|
|
|
|
@pytest.fixture(params=range(iterations))
|
|
def r(request):
|
|
return Random(request.param)
|
|
|
|
|
|
def implication(p, c):
|
|
return not p or c
|
|
|
|
|
|
def uint32_p_to_int(pointer):
|
|
return pointer.contents.value
|
|
|
|
|
|
def uint32_p():
|
|
return ctypes.POINTER(c_int)(c_int())
|
|
|
|
|
|
limb_type = c_uint32
|
|
|
|
|
|
def bignum(limbs_number=limbs_number):
|
|
return (limbs_number * limb_type)()
|
|
|
|
|
|
def limbs_to_bignum(limbs):
|
|
return (limbs_number * limb_type)(*limbs)
|
|
|
|
|
|
def int_to_bignum(number, limbs_number=limbs_number):
|
|
assert number >= 0
|
|
assert number.bit_length() <= limbs_number * bits_per_limb
|
|
|
|
bn = (limbs_number * limb_type)()
|
|
for i in range(limbs_number):
|
|
bn[i] = number % 2**bits_per_limb
|
|
number //= 2**bits_per_limb
|
|
|
|
return bn
|
|
|
|
|
|
def bignum_to_int(bignum, limbs_number=limbs_number):
|
|
number = 0
|
|
|
|
for i in reversed(range(limbs_number)):
|
|
number *= 2**bits_per_limb
|
|
number += bignum[i]
|
|
|
|
return number
|
|
|
|
|
|
def raw_number():
|
|
return (32 * c_uint8)()
|
|
|
|
|
|
def raw_number_to_integer(raw_number, endianess):
|
|
return int.from_bytes(raw_number, endianess)
|
|
|
|
|
|
def integer_to_raw_number(number, endianess):
|
|
return (32 * c_uint8)(*number.to_bytes(32, endianess))
|
|
|
|
|
|
def bignum_is_normalised(bignum):
|
|
for limb in bignum:
|
|
if limb > 2**bits_per_limb:
|
|
return False
|
|
return True
|
|
|
|
|
|
def number_is_partly_reduced(number, prime):
|
|
return number < 2 * prime
|
|
|
|
|
|
def number_is_fully_reduced(number, prime):
|
|
return number < prime
|
|
|
|
|
|
class Random(random.Random):
|
|
def rand_int_normalized(self):
|
|
return self.randrange(0, 2 ** (limbs_number * bits_per_limb))
|
|
|
|
def rand_int_256(self):
|
|
return self.randrange(0, 2**256)
|
|
|
|
def rand_int_reduced(self, p):
|
|
return self.randrange(0, 2 * p)
|
|
|
|
def rand_int_bitsize(self, bitsize):
|
|
return self.randrange(0, 2**bitsize)
|
|
|
|
def rand_bit_index(self):
|
|
return self.randrange(0, limbs_number * bits_per_limb)
|
|
|
|
def rand_bignum(self, limbs_number=limbs_number):
|
|
return (limb_type * limbs_number)(
|
|
*[self.randrange(0, 256**4) for _ in range(limbs_number)]
|
|
)
|
|
|
|
|
|
def assert_bn_read_be(in_number):
|
|
raw_in_number = integer_to_raw_number(in_number, "big")
|
|
bn_out_number = bignum()
|
|
lib.bn_read_be(raw_in_number, bn_out_number)
|
|
out_number = bignum_to_int(bn_out_number)
|
|
|
|
assert bignum_is_normalised(bn_out_number)
|
|
assert out_number == in_number
|
|
|
|
|
|
def assert_bn_read_le(in_number):
|
|
raw_in_number = integer_to_raw_number(in_number, "little")
|
|
bn_out_number = bignum()
|
|
lib.bn_read_le(raw_in_number, bn_out_number)
|
|
out_number = bignum_to_int(bn_out_number)
|
|
|
|
assert bignum_is_normalised(bn_out_number)
|
|
assert out_number == in_number
|
|
|
|
|
|
def assert_bn_write_be(in_number):
|
|
bn_in_number = int_to_bignum(in_number)
|
|
raw_out_number = raw_number()
|
|
lib.bn_write_be(bn_in_number, raw_out_number)
|
|
out_number = raw_number_to_integer(raw_out_number, "big")
|
|
|
|
assert out_number == in_number
|
|
|
|
|
|
def assert_bn_write_le(in_number):
|
|
bn_in_number = int_to_bignum(in_number)
|
|
raw_out_number = raw_number()
|
|
lib.bn_write_le(bn_in_number, raw_out_number)
|
|
out_number = raw_number_to_integer(raw_out_number, "little")
|
|
|
|
assert out_number == in_number
|
|
|
|
|
|
def assert_bn_read_uint32(x):
|
|
bn_out_number = bignum()
|
|
lib.bn_read_uint32(c_uint32(x), bn_out_number)
|
|
out_number = bignum_to_int(bn_out_number)
|
|
|
|
assert bignum_is_normalised(bn_out_number)
|
|
assert out_number == x
|
|
|
|
|
|
def assert_bn_read_uint64(x):
|
|
bn_out_number = bignum()
|
|
lib.bn_read_uint64(c_uint64(x), bn_out_number)
|
|
out_number = bignum_to_int(bn_out_number)
|
|
|
|
assert bignum_is_normalised(bn_out_number)
|
|
assert out_number == x
|
|
|
|
|
|
def assert_bn_bitcount(x):
|
|
bn_x = int_to_bignum(x)
|
|
return_value = lib.bn_bitcount(bn_x)
|
|
|
|
assert return_value == x.bit_length()
|
|
|
|
|
|
def assert_bn_digitcount(x):
|
|
bn_x = int_to_bignum(x)
|
|
return_value = lib.bn_digitcount(bn_x)
|
|
|
|
assert return_value == len(str(x))
|
|
|
|
|
|
def assert_bn_zero():
|
|
bn_x = bignum()
|
|
lib.bn_zero(bn_x)
|
|
x = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x == 0
|
|
|
|
|
|
def assert_bn_one():
|
|
bn_x = bignum()
|
|
lib.bn_one(bn_x)
|
|
x = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x == 1
|
|
|
|
|
|
def assert_bn_is_zero(x):
|
|
bn_x = int_to_bignum(x)
|
|
return_value = lib.bn_is_zero(bn_x)
|
|
|
|
assert return_value == (x == 0)
|
|
|
|
|
|
def assert_bn_is_one(x):
|
|
bn_x = int_to_bignum(x)
|
|
return_value = lib.bn_is_one(bn_x)
|
|
|
|
assert return_value == (x == 1)
|
|
|
|
|
|
def assert_bn_is_less(x, y):
|
|
bn_x = int_to_bignum(x)
|
|
bn_y = int_to_bignum(y)
|
|
return_value = lib.bn_is_less(bn_x, bn_y)
|
|
|
|
assert return_value == (x < y)
|
|
|
|
|
|
def assert_bn_is_equal(x, y):
|
|
bn_x = int_to_bignum(x)
|
|
bn_y = int_to_bignum(y)
|
|
return_value = lib.bn_is_equal(bn_x, bn_y)
|
|
|
|
assert return_value == (x == y)
|
|
|
|
|
|
def assert_bn_cmov(cond, truecase, falsecase):
|
|
bn_res = bignum()
|
|
bn_truecase = int_to_bignum(truecase)
|
|
bn_falsecase = int_to_bignum(falsecase)
|
|
lib.bn_cmov(bn_res, c_uint32(cond), bn_truecase, bn_falsecase)
|
|
res = bignum_to_int(bn_res)
|
|
|
|
assert res == truecase if cond else falsecase
|
|
|
|
|
|
def assert_bn_cnegate(cond, x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_cnegate(c_uint32(cond), bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new % prime == -x_old % prime if cond else x_old % prime
|
|
|
|
|
|
def assert_bn_lshift(x_old):
|
|
bn_x = int_to_bignum(x_old)
|
|
lib.bn_lshift(bn_x)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == (x_old << 1)
|
|
|
|
|
|
def assert_bn_rshift(x_old):
|
|
bn_x = int_to_bignum(x_old)
|
|
lib.bn_rshift(bn_x)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == (x_old >> 1)
|
|
|
|
|
|
def assert_bn_setbit(x_old, i):
|
|
bn_x = int_to_bignum(x_old)
|
|
lib.bn_setbit(bn_x, c_uint16(i))
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old | (1 << i)
|
|
|
|
|
|
def assert_bn_clearbit(x_old, i):
|
|
bn_x = int_to_bignum(x_old)
|
|
lib.bn_clearbit(bn_x, c_uint16(i))
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old & ~(1 << i)
|
|
|
|
|
|
def assert_bn_testbit(x_old, i):
|
|
bn_x = int_to_bignum(x_old)
|
|
return_value = lib.bn_testbit(bn_x, c_uint16(i))
|
|
|
|
assert return_value == x_old >> i & 1
|
|
|
|
|
|
def assert_bn_xor(x, y):
|
|
bn_res = bignum()
|
|
bn_x = int_to_bignum(x)
|
|
bn_y = int_to_bignum(y)
|
|
lib.bn_xor(bn_res, bn_x, bn_y)
|
|
res = bignum_to_int(bn_res)
|
|
|
|
assert res == x ^ y
|
|
|
|
|
|
def assert_bn_mult_half(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_mult_half(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert implication(
|
|
number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
|
|
)
|
|
assert x_new == (x_old + prime) >> 1 if x_old & 1 else x_old >> 1
|
|
|
|
|
|
def assert_bn_mult_k(x_old, k, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_mult_k(bn_x, c_uint8(k), bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new == (x_old * k) % prime
|
|
|
|
|
|
def assert_bn_mod(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_mod(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_fully_reduced(x_new, prime)
|
|
assert x_new == x_old % prime
|
|
|
|
|
|
def assert_bn_multiply_long(k_old, x_old):
|
|
bn_k = int_to_bignum(k_old)
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_res = bignum(2 * limbs_number)
|
|
lib.bn_multiply_long(bn_k, bn_x, bn_res)
|
|
res = bignum_to_int(bn_res, 2 * limbs_number)
|
|
|
|
assert res == k_old * x_old
|
|
|
|
|
|
def assert_bn_multiply_reduce_step(res_old, prime, d):
|
|
bn_res = int_to_bignum(res_old, 2 * limbs_number)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_multiply_reduce_step(bn_res, bn_prime, d)
|
|
res_new = bignum_to_int(bn_res, 2 * limbs_number)
|
|
|
|
assert bignum_is_normalised(bn_res)
|
|
assert res_new < 2 * prime * 2 ** (d * bits_per_limb)
|
|
|
|
|
|
def assert_bn_multiply(k, x_old, prime):
|
|
bn_k = int_to_bignum(k)
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_multiply(bn_k, bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new == (k * x_old) % prime
|
|
|
|
|
|
def assert_bn_fast_mod(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_fast_mod(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new % prime == x_old % prime
|
|
|
|
|
|
def assert_bn_fast_mod_bn(bn_x, prime):
|
|
bn_x
|
|
x_old = bignum_to_int(bn_x)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_fast_mod(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new % prime == x_old % prime
|
|
|
|
|
|
def assert_bn_power_mod(x, e, prime):
|
|
bn_x = int_to_bignum(x)
|
|
bn_e = int_to_bignum(e)
|
|
bn_prime = int_to_bignum(prime)
|
|
bn_res_new = bignum()
|
|
lib.bn_power_mod(bn_x, bn_e, bn_prime, bn_res_new)
|
|
res_new = bignum_to_int(bn_res_new)
|
|
|
|
assert bignum_is_normalised(bn_res_new)
|
|
assert number_is_partly_reduced(res_new, prime)
|
|
assert res_new % prime == pow(x, e, prime)
|
|
|
|
|
|
def assert_bn_sqrt(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_sqrt(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_fully_reduced(x_new, prime)
|
|
assert x_new**2 % prime == x_old % prime
|
|
|
|
|
|
def assert_inverse_mod_power_two(x, m):
|
|
return_value = lib.inverse_mod_power_two(c_uint32(x), c_uint32(m))
|
|
|
|
assert return_value * x % 2**m == 1
|
|
|
|
|
|
def assert_bn_divide_base(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_divide_base(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert implication(
|
|
number_is_fully_reduced(x_old, prime), number_is_fully_reduced(x_new, prime)
|
|
)
|
|
assert implication(
|
|
number_is_partly_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
|
|
)
|
|
assert x_new * 2**bits_per_limb % prime == x_old % prime
|
|
|
|
|
|
def assert_bn_inverse(x_old, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_inverse(bn_x, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_fully_reduced(x_new, prime)
|
|
assert (x_old == 0 and x_new == 0) or (x_old != 0 and (x_old * x_new) % prime == 1)
|
|
|
|
|
|
def assert_bn_normalize(bn_x):
|
|
x_old = bignum_to_int(bn_x)
|
|
lib.bn_normalize(bn_x)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert x_new == x_old % 2 ** (bits_per_limb * limbs_number)
|
|
assert bignum_is_normalised(bn_x)
|
|
|
|
|
|
def assert_bn_add(x_old, y):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_y = int_to_bignum(y)
|
|
lib.bn_add(bn_x, bn_y)
|
|
x_new = bignum_to_int(bn_x)
|
|
y = bignum_to_int(bn_y)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old + y
|
|
|
|
|
|
def assert_bn_addmod(x_old, y, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_y = int_to_bignum(y)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_addmod(bn_x, bn_y, bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert number_is_partly_reduced(x_new, prime)
|
|
assert x_new % prime == (x_old + y) % prime
|
|
|
|
|
|
def assert_bn_addi(x_old, y):
|
|
bn_x = int_to_bignum(x_old)
|
|
lib.bn_addi(bn_x, c_uint32(y))
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old + y
|
|
|
|
|
|
def assert_bn_subi(x_old, y, prime):
|
|
bn_x = int_to_bignum(x_old)
|
|
bn_prime = int_to_bignum(prime)
|
|
lib.bn_subi(bn_x, c_uint32(y), bn_prime)
|
|
x_new = bignum_to_int(bn_x)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert implication(
|
|
number_is_fully_reduced(x_old, prime), number_is_partly_reduced(x_new, prime)
|
|
)
|
|
assert x_new % prime == (x_old - y) % prime
|
|
|
|
|
|
def assert_bn_subtractmod(x, y, prime):
|
|
bn_x = int_to_bignum(x)
|
|
bn_y = int_to_bignum(y)
|
|
bn_prime = int_to_bignum(prime)
|
|
bn_res = bignum()
|
|
lib.bn_subtractmod(bn_x, bn_y, bn_res, bn_prime)
|
|
res = bignum_to_int(bn_res)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert res % prime == (x - y) % prime
|
|
|
|
|
|
def assert_bn_subtract(x, y):
|
|
bn_x = int_to_bignum(x)
|
|
bn_y = int_to_bignum(y)
|
|
bn_res = bignum()
|
|
lib.bn_subtract(bn_x, bn_y, bn_res)
|
|
res = bignum_to_int(bn_res)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert res == x - y
|
|
|
|
|
|
def assert_bn_long_division(x, d):
|
|
bn_x = int_to_bignum(x)
|
|
bn_q = bignum()
|
|
uint32_p_r = uint32_p()
|
|
lib.bn_long_division(bn_x, d, bn_q, uint32_p_r)
|
|
r = uint32_p_to_int(uint32_p_r)
|
|
q = bignum_to_int(bn_q)
|
|
|
|
assert bignum_is_normalised(bn_q)
|
|
assert q == x // d
|
|
assert r == x % d
|
|
|
|
|
|
def assert_bn_divmod58(x_old):
|
|
bn_x = int_to_bignum(x_old)
|
|
uint32_p_r = uint32_p()
|
|
lib.bn_divmod58(bn_x, uint32_p_r)
|
|
x_new = bignum_to_int(bn_x)
|
|
r = uint32_p_to_int(uint32_p_r)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old // 58
|
|
assert r == x_old % 58
|
|
|
|
|
|
def assert_bn_divmod1000(x_old):
|
|
bn_x = int_to_bignum(x_old)
|
|
uint32_p_r = uint32_p()
|
|
lib.bn_divmod1000(bn_x, uint32_p_r)
|
|
x_new = bignum_to_int(bn_x)
|
|
r = uint32_p_to_int(uint32_p_r)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old // 1000
|
|
assert r == x_old % 1000
|
|
|
|
|
|
def assert_bn_divmod10(x_old):
|
|
bn_x = int_to_bignum(x_old)
|
|
uint32_p_r = uint32_p()
|
|
lib.bn_divmod10(bn_x, uint32_p_r)
|
|
x_new = bignum_to_int(bn_x)
|
|
r = uint32_p_to_int(uint32_p_r)
|
|
|
|
assert bignum_is_normalised(bn_x)
|
|
assert x_new == x_old // 10
|
|
assert r == x_old % 10
|
|
|
|
|
|
def assert_bn_format(x, prefix, suffix, decimals, exponent, trailing, thousands):
|
|
def format(amount, prefix, suffix, decimals, exponent, trailing, thousands):
|
|
if exponent >= 0:
|
|
amount *= 10**exponent
|
|
else:
|
|
amount //= 10 ** (-exponent)
|
|
|
|
d = pow(10, decimals)
|
|
|
|
integer_part = amount // d
|
|
integer_str = f"{integer_part:,}".replace(",", thousands or "")
|
|
|
|
if decimals:
|
|
decimal_part = amount % d
|
|
decimal_str = f".{decimal_part:0{decimals}d}"
|
|
if not trailing:
|
|
decimal_str = decimal_str.rstrip("0").rstrip(".")
|
|
else:
|
|
decimal_str = ""
|
|
|
|
return prefix + integer_str + decimal_str + suffix
|
|
|
|
def string_to_char_p(string):
|
|
return ctypes.create_string_buffer(string.encode("ascii"))
|
|
|
|
def char_p_to_string(pointer):
|
|
return str(pointer.value, "ascii")
|
|
|
|
bn_x = int_to_bignum(x)
|
|
output_length = 100
|
|
output = string_to_char_p("?" * output_length)
|
|
return_value = lib.bn_format(
|
|
bn_x,
|
|
string_to_char_p(prefix),
|
|
string_to_char_p(suffix),
|
|
c_uint(decimals),
|
|
c_int(exponent),
|
|
c_bool(trailing),
|
|
c_char(0),
|
|
output,
|
|
c_size_t(output_length),
|
|
)
|
|
|
|
correct_output = format(x, prefix, suffix, decimals, exponent, trailing, "")
|
|
correct_return_value = len(correct_output)
|
|
if len(correct_output) >= output_length:
|
|
correct_output = ""
|
|
correct_return_value = 0
|
|
|
|
assert char_p_to_string(output) == correct_output
|
|
assert return_value == correct_return_value
|
|
|
|
|
|
def test_bn_read_be(r):
|
|
assert_bn_read_be(r.rand_int_256())
|
|
|
|
|
|
def test_bn_read_le(r):
|
|
assert_bn_read_le(r.rand_int_256())
|
|
|
|
|
|
def test_bn_write_be(r):
|
|
assert_bn_write_be(r.rand_int_256())
|
|
|
|
|
|
def test_bn_write_le(r):
|
|
assert_bn_write_le(r.rand_int_256())
|
|
|
|
|
|
def test_bn_read_uint32(r):
|
|
assert_bn_read_uint32(r.rand_int_bitsize(32))
|
|
|
|
|
|
def test_bn_read_uint64(r):
|
|
assert_bn_read_uint64(r.rand_int_bitsize(64))
|
|
|
|
|
|
def test_bn_bitcount_1(r):
|
|
assert_bn_bitcount(r.rand_int_normalized())
|
|
|
|
|
|
def test_bn_bitcount_2(bignum_bit_index):
|
|
assert_bn_bitcount(2**bignum_bit_index - 1)
|
|
assert_bn_bitcount(2**bignum_bit_index)
|
|
|
|
|
|
def test_bn_digitcount_1(r):
|
|
assert_bn_digitcount(r.rand_int_normalized())
|
|
|
|
|
|
def test_bn_digitcount_2(bignum_decimal_digit_index):
|
|
assert_bn_digitcount(10**bignum_decimal_digit_index - 1)
|
|
assert_bn_digitcount(10**bignum_decimal_digit_index)
|
|
|
|
|
|
def test_bn_zero():
|
|
assert_bn_zero()
|
|
|
|
|
|
def test_bn_one():
|
|
assert_bn_one()
|
|
|
|
|
|
def test_bn_is_zero_1():
|
|
assert_bn_is_zero(0)
|
|
assert_bn_is_zero(1)
|
|
|
|
|
|
def test_bn_is_zero_2(bignum_bit_index):
|
|
assert_bn_is_zero(2**bignum_bit_index)
|
|
|
|
|
|
def test_bn_is_one_1():
|
|
assert_bn_is_one(0)
|
|
assert_bn_is_one(1)
|
|
|
|
|
|
def test_bn_is_one_2(bignum_bit_index):
|
|
assert_bn_is_one(2**bignum_bit_index)
|
|
|
|
|
|
def test_bn_is_less_1(r):
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_normalized()
|
|
assert_bn_is_less(a, a)
|
|
assert_bn_is_less(a, b)
|
|
assert_bn_is_less(b, a)
|
|
|
|
|
|
def test_bn_is_less_2(r):
|
|
a = r.rand_int_normalized()
|
|
i = r.rand_bit_index()
|
|
b = a ^ 2**i
|
|
assert_bn_is_less(a, b)
|
|
|
|
|
|
def test_bn_is_less_3():
|
|
assert_bn_is_less(0, 0)
|
|
assert_bn_is_less(1, 0)
|
|
assert_bn_is_less(0, 1)
|
|
assert_bn_is_less(1, 1)
|
|
|
|
|
|
def test_bn_is_equal_1(r):
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_normalized()
|
|
assert_bn_is_equal(a, a)
|
|
assert_bn_is_equal(a, b)
|
|
|
|
|
|
def test_bn_is_equal_2():
|
|
assert_bn_is_equal(0, 0)
|
|
assert_bn_is_equal(1, 0)
|
|
assert_bn_is_equal(0, 1)
|
|
assert_bn_is_equal(1, 1)
|
|
|
|
|
|
def test_bn_cmov(r):
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_normalized()
|
|
assert_bn_cmov(0, a, b)
|
|
assert_bn_cmov(1, a, b)
|
|
|
|
|
|
def test_bn_cnegate(r, prime):
|
|
a = r.rand_int_reduced(prime)
|
|
assert_bn_cnegate(0, a, prime)
|
|
assert_bn_cnegate(1, a, prime)
|
|
|
|
|
|
def test_bn_lshift(r):
|
|
assert_bn_lshift(r.rand_int_normalized() // 2)
|
|
|
|
|
|
def test_bn_rshift(r):
|
|
assert_bn_rshift(r.rand_int_normalized())
|
|
|
|
|
|
def test_bn_testbit(r):
|
|
assert_bn_testbit(r.rand_int_normalized(), r.rand_bit_index())
|
|
|
|
|
|
def test_bn_setbit(r):
|
|
assert_bn_setbit(r.rand_int_normalized(), r.rand_bit_index())
|
|
|
|
|
|
def test_bn_clearbit(r):
|
|
assert_bn_clearbit(r.rand_int_normalized(), r.rand_bit_index())
|
|
|
|
|
|
def test_bn_xor(r):
|
|
assert_bn_xor(r.rand_int_normalized(), r.rand_int_normalized())
|
|
|
|
|
|
def test_bn_mult_half_1(r, prime):
|
|
assert_bn_mult_half(r.rand_int_reduced(prime), prime)
|
|
|
|
|
|
def test_bn_mult_half_2(r, prime):
|
|
assert_bn_mult_half(r.rand_int_normalized(), prime)
|
|
|
|
|
|
def test_bn_mult_k(r, prime):
|
|
assert_bn_mult_k(r.rand_int_normalized(), r.randrange(9), prime)
|
|
|
|
|
|
def test_bn_mod_1(r, prime):
|
|
assert_bn_mod(r.rand_int_reduced(prime), prime)
|
|
|
|
|
|
def test_bn_mod_2(r, prime):
|
|
for x in [
|
|
0,
|
|
1,
|
|
2,
|
|
prime - 2,
|
|
prime - 1,
|
|
prime,
|
|
prime + 1,
|
|
prime + 2,
|
|
2 * prime - 2,
|
|
2 * prime - 1,
|
|
]:
|
|
assert_bn_mod(x, prime)
|
|
|
|
|
|
def test_bn_multiply_long(r, prime):
|
|
x = r.randrange(floor(sqrt(2**519)))
|
|
k = r.randrange(floor(sqrt(2**519)))
|
|
assert_bn_multiply_long(k, x)
|
|
|
|
|
|
def test_bn_multiply_reduce_step(r, prime):
|
|
k = r.randrange(0, limbs_number)
|
|
res = r.randrange(2 ** (256 + 29 * k + 31))
|
|
assert_bn_multiply_reduce_step(res, prime, k)
|
|
|
|
|
|
def test_bn_multiply(r, prime):
|
|
x = r.randrange(floor(sqrt(2**519)))
|
|
k = r.randrange(floor(sqrt(2**519)))
|
|
assert_bn_multiply(k, x, prime)
|
|
|
|
|
|
def test_bn_fast_mod_1(r, prime):
|
|
assert_bn_fast_mod(r.rand_int_normalized(), prime)
|
|
|
|
|
|
def test_bn_fast_mod_2(r, prime):
|
|
bn_x = r.rand_bignum()
|
|
assert_bn_fast_mod_bn(bn_x, prime)
|
|
|
|
|
|
def test_bn_power_mod(r, prime):
|
|
x = r.rand_int_bitsize(259)
|
|
e = r.rand_int_normalized()
|
|
assert_bn_power_mod(x, e, prime)
|
|
|
|
|
|
def test_bn_sqrt_1(prime):
|
|
assert_bn_sqrt(0, prime)
|
|
assert_bn_sqrt(1, prime)
|
|
|
|
|
|
def test_bn_sqrt_2(r, prime):
|
|
def is_quadratic_residuum(x, p):
|
|
return pow(x, (p - 1) // 2, p) == 1
|
|
|
|
while True:
|
|
x = r.rand_int_bitsize(259)
|
|
if is_quadratic_residuum(x, prime):
|
|
break
|
|
|
|
assert_bn_sqrt(x, prime)
|
|
|
|
|
|
def test_inverse_mod_power_two(r):
|
|
m = r.randrange(1, 33)
|
|
i = r.randrange(1, 2**29, 2)
|
|
assert_inverse_mod_power_two(i, m)
|
|
|
|
|
|
def test_bn_divide_base(r, prime):
|
|
assert_bn_divide_base(r.rand_int_256(), prime)
|
|
|
|
|
|
def test_bn_inverse_1(prime):
|
|
assert_bn_inverse(0, prime)
|
|
assert_bn_inverse(1, prime)
|
|
|
|
|
|
def test_bn_inverse_2(r, prime):
|
|
from math import gcd
|
|
|
|
while True:
|
|
n = r.randrange(0, prime)
|
|
if gcd(n, prime) == 1:
|
|
break
|
|
|
|
assert_bn_inverse(n, prime)
|
|
|
|
|
|
def test_bn_normalize(r):
|
|
assert_bn_normalize(r.rand_bignum())
|
|
|
|
|
|
def test_bn_add_1(r):
|
|
assert_bn_add(r.rand_int_256(), r.rand_int_256())
|
|
|
|
|
|
def test_bn_add_2(r):
|
|
while True:
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_normalized()
|
|
if a + b < 2 ** (limbs_number * bits_per_limb):
|
|
break
|
|
assert_bn_add(a, b)
|
|
|
|
|
|
def test_bn_add_3():
|
|
a = Random().rand_int_normalized()
|
|
b = 2 ** (limbs_number * bits_per_limb) - 1 - a
|
|
assert_bn_add(a, b)
|
|
|
|
|
|
def test_bn_addmod(r, prime):
|
|
assert_bn_addmod(r.rand_int_normalized(), r.rand_int_normalized(), prime)
|
|
|
|
|
|
def test_bn_addi_1(r):
|
|
while True:
|
|
a = r.rand_int_normalized()
|
|
b = r.randrange(2**32 - 2**bits_per_limb + 1)
|
|
if a + b < 2 ** (limbs_number * bits_per_limb):
|
|
break
|
|
assert_bn_addi(a, b)
|
|
|
|
|
|
def test_bn_addi_2():
|
|
b = 2**32 - 2**bits_per_limb
|
|
a = 2 ** (limbs_number * bits_per_limb) - 1 - b
|
|
assert_bn_addi(a, b)
|
|
|
|
|
|
def test_bn_subi_1(r, prime):
|
|
while True:
|
|
a = r.rand_int_normalized()
|
|
b = r.randrange(prime % 2**bits_per_limb)
|
|
if a + prime - b < 2 ** (limbs_number * bits_per_limb):
|
|
break
|
|
assert_bn_subi(a, b, prime)
|
|
|
|
|
|
def test_bn_subi_2(prime):
|
|
b = (prime % 2**bits_per_limb) - 1
|
|
a = 2 ** (limbs_number * bits_per_limb) - 1 - prime + b
|
|
assert_bn_subi(a, b, prime)
|
|
|
|
|
|
def test_bn_subtractmod_1(r, prime):
|
|
assert_bn_subtractmod(r.rand_int_256(), r.rand_int_256(), prime)
|
|
|
|
|
|
def test_bn_subtractmod_2(r, prime):
|
|
while True:
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_reduced(prime)
|
|
if a + 2 * prime - b < 2 ** (limbs_number * bits_per_limb):
|
|
break
|
|
assert_bn_subtractmod(a, b, prime)
|
|
|
|
|
|
def test_bn_subtractmod_3(prime):
|
|
b = 2 * prime - 1
|
|
a = 2 ** (limbs_number * bits_per_limb) - 1 - (2 * prime - b)
|
|
assert_bn_subtractmod(a, b, prime)
|
|
|
|
|
|
def test_bn_subtract_1(r):
|
|
a = r.rand_int_256()
|
|
b = r.rand_int_256()
|
|
if a < b:
|
|
a, b = b, a
|
|
assert_bn_subtract(a, b)
|
|
|
|
|
|
def test_bn_subtract_2(r):
|
|
a = r.rand_int_normalized()
|
|
b = r.rand_int_normalized()
|
|
if a < b:
|
|
a, b = b, a
|
|
assert_bn_subtract(a, b)
|
|
|
|
|
|
def test_bn_long_division(r):
|
|
x = r.rand_int_normalized()
|
|
d = r.randrange(1, 61304 + 1)
|
|
assert_bn_long_division(x, d)
|
|
|
|
|
|
def test_bn_divmod58(r):
|
|
x = r.rand_int_normalized()
|
|
assert_bn_divmod58(x)
|
|
|
|
|
|
def test_bn_divmod1000(r):
|
|
x = r.rand_int_normalized()
|
|
assert_bn_divmod1000(x)
|
|
|
|
|
|
def test_bn_divmod10(r):
|
|
x = r.rand_int_normalized()
|
|
assert_bn_divmod10(x)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"decimals,exponent,trailing,prefix,suffix,thousands,value",
|
|
itertools.product(
|
|
range(0, 5),
|
|
range(-5, 5),
|
|
[True, False],
|
|
["", "prefix"],
|
|
["", "suffix"],
|
|
["", ",", " "],
|
|
[123, 120, 123_456, 12_345, 100001, 10001000],
|
|
),
|
|
)
|
|
def test_bn_format(decimals, exponent, trailing, prefix, suffix, thousands, value):
|
|
assert_bn_format(value, prefix, suffix, decimals, exponent, trailing, thousands)
|