mirror of
https://github.com/trezor/trezor-firmware.git
synced 2024-12-24 23:38:09 +00:00
9ef26c347e
Support Schnorr signature and verification defined in https://github.com/bitcoincashorg/bitcoincash.org/blob/master/spec/2019-05-15-schnorr.md. The implementation is based on https://github.com/Bitcoin-ABC/secp256k1 as well as the test vectors.
214 lines
5.8 KiB
C
214 lines
5.8 KiB
C
/**
|
|
* Copyright (c) 2021 The Bitcoin ABC developers
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "schnorr.h"
|
|
#include "hmac_drbg.h"
|
|
#include "memzero.h"
|
|
#include "rfc6979.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
static int jacobi(const bignum256 *_n, const bignum256 *_k) {
|
|
assert(!bn_is_zero(_k) && bn_is_odd(_k));
|
|
|
|
bignum256 n_copy = {0};
|
|
bignum256 *n = &n_copy;
|
|
bn_copy(_n, n);
|
|
|
|
bignum256 k_copy = {0};
|
|
bignum256 *k = &k_copy;
|
|
bn_copy(_k, k);
|
|
|
|
int t = 0;
|
|
while (!bn_is_zero(n)) {
|
|
while (bn_is_even(n)) {
|
|
// jacobi(2 * n, k) = jacobi(n, k) if k = 1 (mod 8) or k = 7 (mod 8)
|
|
// jacobi(2 * n, k) = -jacobi(n, k) if k = 3 (mod 8) or k = 5 (mod 8)
|
|
uint32_t r = k->val[0] & 0x07;
|
|
t ^= (r == 3 || r == 5);
|
|
bn_rshift(n);
|
|
}
|
|
|
|
if (bn_is_less(n, k)) {
|
|
// jacobi(n, k) = jacobi(k, n) if k = n = 1 (mod 4)
|
|
// jacobi(n, k) = -jacobi(k, n) if k = n = 3 (mod 4)
|
|
t ^= ((n->val[0] & k->val[0] & 3) == 3);
|
|
bignum256 *temp = n;
|
|
n = k;
|
|
k = temp;
|
|
}
|
|
|
|
// jacobi(n, k) = jacobi(n - k, k)
|
|
bn_subtract(n, k, n);
|
|
}
|
|
|
|
int k_is_one = bn_is_one(k);
|
|
|
|
// Cleanup
|
|
memzero(&n_copy, sizeof(n_copy));
|
|
memzero(&k_copy, sizeof(k_copy));
|
|
|
|
// Map t: [0] => 1, [1] => -1
|
|
t = -2 * t + 1;
|
|
|
|
return k_is_one * t;
|
|
}
|
|
|
|
static int is_non_quad_residue(const bignum256 *n, const bignum256 *prime) {
|
|
return jacobi(n, prime) == -1;
|
|
}
|
|
|
|
static int generate_k_schnorr(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
const uint8_t *hash, bignum256 *k) {
|
|
rfc6979_state rng = {0};
|
|
uint8_t hmac_data[SHA256_DIGEST_LENGTH + 16] = {0};
|
|
|
|
/*
|
|
* Init the HMAC with additional data specific to Schnorr. This prevents from
|
|
* leaking the private key in the case the same message is signed with both
|
|
* Schnorr and ECDSA.
|
|
*/
|
|
memcpy(hmac_data, hash, SHA256_DIGEST_LENGTH);
|
|
memcpy(hmac_data + SHA256_DIGEST_LENGTH, "Schnorr+SHA256 ", 16);
|
|
hmac_drbg_init(&rng, priv_key, 32, hmac_data, SHA256_DIGEST_LENGTH + 16);
|
|
|
|
for (int i = 0; i < 10000; i++) {
|
|
generate_k_rfc6979(k, &rng);
|
|
// If k is too big or too small, we don't like it
|
|
if (bn_is_zero(k) || !bn_is_less(k, &curve->order)) {
|
|
continue;
|
|
}
|
|
|
|
memzero(&rng, sizeof(rng));
|
|
return 0;
|
|
}
|
|
|
|
memzero(&rng, sizeof(rng));
|
|
return 1;
|
|
}
|
|
|
|
// e = H(Rx, pub_key, msg_hash)
|
|
static void calc_e(const ecdsa_curve *curve, const bignum256 *Rx,
|
|
const uint8_t pub_key[33], const uint8_t *msg_hash,
|
|
bignum256 *e) {
|
|
uint8_t Rxbuf[32] = {0};
|
|
SHA256_CTX ctx = {0};
|
|
uint8_t digest[SHA256_DIGEST_LENGTH] = {0};
|
|
|
|
bn_write_be(Rx, Rxbuf);
|
|
|
|
sha256_Init(&ctx);
|
|
sha256_Update(&ctx, Rxbuf, sizeof(Rxbuf));
|
|
sha256_Update(&ctx, pub_key, 33);
|
|
sha256_Update(&ctx, msg_hash, SHA256_DIGEST_LENGTH);
|
|
sha256_Final(&ctx, digest);
|
|
|
|
bn_read_be(digest, e);
|
|
bn_fast_mod(e, &curve->order);
|
|
bn_mod(e, &curve->order);
|
|
}
|
|
|
|
int schnorr_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key,
|
|
const uint8_t *digest, uint8_t *sign) {
|
|
uint8_t pub_key[33] = {0};
|
|
curve_point R = {0};
|
|
bignum256 e = {0}, s = {0}, k = {0};
|
|
|
|
ecdsa_get_public_key33(curve, priv_key, pub_key);
|
|
|
|
// Compute k
|
|
if (generate_k_schnorr(curve, priv_key, digest, &k) != 0) {
|
|
memzero(&k, sizeof(k));
|
|
return 1;
|
|
}
|
|
|
|
// Compute R = k * G
|
|
scalar_multiply(curve, &k, &R);
|
|
|
|
// If R.y is not a quadratic residue, negate the nonce
|
|
bn_cnegate(is_non_quad_residue(&R.y, &curve->prime), &k, &curve->order);
|
|
|
|
bn_write_be(&R.x, sign);
|
|
|
|
// Compute e = H(Rx, pub_key, msg_hash)
|
|
calc_e(curve, &R.x, pub_key, digest, &e);
|
|
|
|
// Compute s = k + e * priv_key
|
|
bn_read_be(priv_key, &s);
|
|
bn_multiply(&e, &s, &curve->order);
|
|
bn_addmod(&s, &k, &curve->order);
|
|
memzero(&k, sizeof(k));
|
|
bn_mod(&s, &curve->order);
|
|
bn_write_be(&s, sign + 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int schnorr_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key,
|
|
const uint8_t *digest, const uint8_t *sign) {
|
|
curve_point P = {0}, sG = {0}, R = {0};
|
|
bignum256 r = {0}, s = {0}, e = {0};
|
|
|
|
bn_read_be(sign, &r);
|
|
bn_read_be(sign + 32, &s);
|
|
|
|
// Signature is invalid if s >= n or r >= p.
|
|
if (!bn_is_less(&r, &curve->prime) || !bn_is_less(&s, &curve->order)) {
|
|
return 1;
|
|
}
|
|
|
|
if (!ecdsa_read_pubkey(curve, pub_key, &P)) {
|
|
return 2;
|
|
}
|
|
|
|
// Compute e
|
|
calc_e(curve, &r, pub_key, digest, &e);
|
|
|
|
if (bn_is_zero(&e)) {
|
|
return 3;
|
|
}
|
|
|
|
// Compute R = sG - eP
|
|
bn_subtract(&curve->order, &e, &e);
|
|
scalar_multiply(curve, &s, &sG);
|
|
point_multiply(curve, &e, &P, &R);
|
|
point_add(curve, &sG, &R);
|
|
|
|
if (point_is_infinity(&R)) {
|
|
return 4;
|
|
}
|
|
|
|
// Check r == Rx
|
|
if (!bn_is_equal(&r, &R.x)) {
|
|
return 5;
|
|
}
|
|
|
|
// Check Ry is a quadratic residue
|
|
if (is_non_quad_residue(&R.y, &curve->prime)) {
|
|
return 6;
|
|
}
|
|
|
|
return 0;
|
|
}
|