mirror of
https://github.com/trezor/trezor-firmware.git
synced 2025-01-22 05:10:56 +00:00
406 lines
12 KiB
C
406 lines
12 KiB
C
/**
|
|
* Copyright (c) SatoshiLabs
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
|
|
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
|
|
#include "memzero.h"
|
|
#include "secp256k1.h"
|
|
#include "zkp_context.h"
|
|
|
|
#include "vendor/secp256k1-zkp/include/secp256k1.h"
|
|
#include "vendor/secp256k1-zkp/include/secp256k1_extrakeys.h"
|
|
#include "vendor/secp256k1-zkp/include/secp256k1_preallocated.h"
|
|
#include "vendor/secp256k1-zkp/include/secp256k1_recovery.h"
|
|
|
|
#include "zkp_ecdsa.h"
|
|
|
|
static bool is_zero_digest(const uint8_t *digest) {
|
|
const uint8_t zeroes[32] = {0};
|
|
return memcmp(digest, zeroes, 32) == 0;
|
|
}
|
|
|
|
// ECDSA compressed public key derivation
|
|
// curve has to be &secp256k1
|
|
// private_key_bytes has 32 bytes
|
|
// public_key_bytes has 33 bytes
|
|
// returns 0 on success
|
|
int zkp_ecdsa_get_public_key33(const ecdsa_curve *curve,
|
|
const uint8_t *private_key_bytes,
|
|
uint8_t *public_key_bytes) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
int result = 0;
|
|
|
|
secp256k1_context *context_writable = NULL;
|
|
if (result == 0) {
|
|
context_writable = zkp_context_acquire_writable();
|
|
if (context_writable == NULL) {
|
|
result = 1;
|
|
}
|
|
}
|
|
if (result == 0) {
|
|
if (secp256k1_context_writable_randomize(context_writable) != 0) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_pubkey public_key = {0};
|
|
if (result == 0) {
|
|
if (secp256k1_ec_pubkey_create(context_writable, &public_key,
|
|
private_key_bytes) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
if (context_writable) {
|
|
zkp_context_release_writable();
|
|
context_writable = NULL;
|
|
}
|
|
|
|
if (result == 0) {
|
|
size_t written = 33;
|
|
const secp256k1_context *context_read_only = zkp_context_get_read_only();
|
|
int returned = secp256k1_ec_pubkey_serialize(
|
|
context_read_only, public_key_bytes, &written, &public_key,
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
if (returned != 1 || written != 33) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
memzero(&public_key, sizeof(public_key));
|
|
return result;
|
|
}
|
|
|
|
// ECDSA uncompressed public key derivation
|
|
// curve has to be &secp256k1
|
|
// private_key_bytes has 32 bytes
|
|
// public_key_bytes has 65 bytes
|
|
// returns 0 on success
|
|
int zkp_ecdsa_get_public_key65(const ecdsa_curve *curve,
|
|
const uint8_t *private_key_bytes,
|
|
uint8_t *public_key_bytes) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
int result = 0;
|
|
|
|
secp256k1_context *context_writable = NULL;
|
|
if (result == 0) {
|
|
context_writable = zkp_context_acquire_writable();
|
|
if (context_writable == NULL) {
|
|
result = 1;
|
|
}
|
|
}
|
|
if (result == 0) {
|
|
if (secp256k1_context_writable_randomize(context_writable) != 0) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_pubkey public_key = {0};
|
|
if (result == 0) {
|
|
if (secp256k1_ec_pubkey_create(context_writable, &public_key,
|
|
private_key_bytes) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
if (context_writable) {
|
|
zkp_context_release_writable();
|
|
context_writable = NULL;
|
|
}
|
|
|
|
if (result == 0) {
|
|
size_t written = 65;
|
|
const secp256k1_context *context_read_only = zkp_context_get_read_only();
|
|
int returned = secp256k1_ec_pubkey_serialize(
|
|
context_read_only, public_key_bytes, &written, &public_key,
|
|
SECP256K1_EC_UNCOMPRESSED);
|
|
|
|
if (returned != 1 || written != 65) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
memzero(&public_key, sizeof(public_key));
|
|
return result;
|
|
}
|
|
|
|
// ECDSA signing
|
|
// curve has to be &secp256k1
|
|
// private_key_bytes has 32 bytes
|
|
// digest has 32 bytes
|
|
// signature_bytes has 64 bytes
|
|
// pby is one byte
|
|
// returns 0 on success
|
|
int zkp_ecdsa_sign_digest(
|
|
const ecdsa_curve *curve, const uint8_t *private_key_bytes,
|
|
const uint8_t *digest, uint8_t *signature_bytes, uint8_t *pby,
|
|
int (*is_canonical)(uint8_t by, uint8_t signature_bytes[64])) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
int result = 0;
|
|
|
|
if (result == 0) {
|
|
if (is_zero_digest(digest)) {
|
|
// The probability of the digest being all-zero by chance is
|
|
// infinitesimal, so this is most likely an indication of a bug.
|
|
// Furthermore, the signature has no value, because in this case it can be
|
|
// easily forged for any public key, see zkp_ecdsa_verify_digest().
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_context *context_writable = NULL;
|
|
if (result == 0) {
|
|
context_writable = zkp_context_acquire_writable();
|
|
if (context_writable == NULL) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
uint16_t retry_count = 0;
|
|
int recid = 0;
|
|
do {
|
|
if (retry_count >= 10000) {
|
|
result = 1;
|
|
}
|
|
|
|
if (result == 0) {
|
|
if (secp256k1_context_writable_randomize(context_writable) != 0) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_ecdsa_recoverable_signature recoverable_signature = {0};
|
|
if (result == 0) {
|
|
uint8_t rfc6979_nonce_data[32] = {0};
|
|
void *rfc6979_nonce = NULL;
|
|
if (retry_count != 0) {
|
|
// If this is a retry attempt, then randomize rfc6979 with the counter.
|
|
rfc6979_nonce_data[0] = retry_count & 0xff;
|
|
rfc6979_nonce_data[1] = (retry_count >> 8) & 0xff;
|
|
rfc6979_nonce = rfc6979_nonce_data;
|
|
}
|
|
|
|
if (secp256k1_ecdsa_sign_recoverable(
|
|
context_writable, &recoverable_signature, digest,
|
|
private_key_bytes, secp256k1_nonce_function_rfc6979,
|
|
rfc6979_nonce) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
if (result == 0) {
|
|
const secp256k1_context *context_read_only = zkp_context_get_read_only();
|
|
if (secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
|
context_read_only, signature_bytes, &recid,
|
|
&recoverable_signature) != 1) {
|
|
result = 1;
|
|
}
|
|
|
|
if (pby != NULL) {
|
|
*pby = (uint8_t)recid;
|
|
}
|
|
}
|
|
memzero(&recoverable_signature, sizeof(recoverable_signature));
|
|
|
|
retry_count += 1;
|
|
|
|
// If the signature is not acceptable then retry.
|
|
} while (result == 0 && is_canonical != NULL &&
|
|
!is_canonical(recid, signature_bytes));
|
|
|
|
if (context_writable) {
|
|
zkp_context_release_writable();
|
|
context_writable = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// ECDSA public key recovery
|
|
// public_key_bytes has 65 bytes
|
|
// signature_bytes has 64 bytes
|
|
// digest has 32 bytes
|
|
// recid is 0, 1, 2 or 3
|
|
// returns 0 on success
|
|
int zkp_ecdsa_recover_pub_from_sig(const ecdsa_curve *curve,
|
|
uint8_t *public_key_bytes,
|
|
const uint8_t *signature_bytes,
|
|
const uint8_t *digest, int recid) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
int result = 0;
|
|
|
|
const secp256k1_context *context_read_only = zkp_context_get_read_only();
|
|
secp256k1_ecdsa_recoverable_signature recoverable_signature = {0};
|
|
|
|
if (result == 0) {
|
|
if (secp256k1_ecdsa_recoverable_signature_parse_compact(
|
|
context_read_only, &recoverable_signature, signature_bytes,
|
|
recid) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_pubkey public_key = {0};
|
|
|
|
if (result == 0) {
|
|
if (secp256k1_ecdsa_recover(context_read_only, &public_key,
|
|
&recoverable_signature, digest) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
memzero(&recoverable_signature, sizeof(recoverable_signature));
|
|
|
|
if (result == 0) {
|
|
size_t written = 65;
|
|
int returned = secp256k1_ec_pubkey_serialize(
|
|
context_read_only, public_key_bytes, &written, &public_key,
|
|
SECP256K1_EC_UNCOMPRESSED);
|
|
if (returned != 1 || written != 65) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
memzero(&public_key, sizeof(public_key));
|
|
|
|
return result;
|
|
}
|
|
|
|
// ECDSA verification
|
|
// curve has to be &secp256k1
|
|
// public_key_bytes has 33 or 65 bytes
|
|
// signature_bytes has 64 bytes
|
|
// digest has 32 bytes
|
|
// returns 0 if verification succeeded
|
|
int zkp_ecdsa_verify_digest(const ecdsa_curve *curve,
|
|
const uint8_t *public_key_bytes,
|
|
const uint8_t *signature_bytes,
|
|
const uint8_t *digest) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
int result = 0;
|
|
|
|
int public_key_length = 0;
|
|
|
|
if (result == 0) {
|
|
if (public_key_bytes[0] == 0x04) {
|
|
public_key_length = 65;
|
|
} else if (public_key_bytes[0] == 0x02 || public_key_bytes[0] == 0x03) {
|
|
public_key_length = 33;
|
|
} else {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
if (result == 0) {
|
|
if (is_zero_digest(digest)) {
|
|
// The digest was all-zero. The probability of this happening by chance is
|
|
// infinitesimal, but it could be induced by a fault injection. In this
|
|
// case the signature (r,s) can be forged by taking r := (t * Q).x mod n
|
|
// and s := r * t^-1 mod n for any t in [1, n-1]. We fail verification,
|
|
// because there is no guarantee that the signature was created by the
|
|
// owner of the private key.
|
|
result = 3;
|
|
}
|
|
}
|
|
|
|
const secp256k1_context *context_read_only = zkp_context_get_read_only();
|
|
secp256k1_pubkey public_key = {0};
|
|
|
|
if (result == 0) {
|
|
if (secp256k1_ec_pubkey_parse(context_read_only, &public_key,
|
|
public_key_bytes, public_key_length) != 1) {
|
|
result = 1;
|
|
}
|
|
}
|
|
|
|
secp256k1_ecdsa_signature signature = {0};
|
|
|
|
if (result == 0) {
|
|
if (secp256k1_ecdsa_signature_parse_compact(context_read_only, &signature,
|
|
signature_bytes) != 1) {
|
|
result = 2;
|
|
}
|
|
}
|
|
|
|
if (result == 0) {
|
|
(void)secp256k1_ecdsa_signature_normalize(
|
|
context_read_only, &signature,
|
|
&signature); // The return value inidicates whether the signature was
|
|
// already normalized
|
|
|
|
if (secp256k1_ecdsa_verify(context_read_only, &signature, digest,
|
|
&public_key) != 1) {
|
|
result = 5;
|
|
}
|
|
}
|
|
|
|
memzero(&public_key, sizeof(public_key));
|
|
memzero(&signature, sizeof(signature));
|
|
|
|
return result;
|
|
}
|
|
|
|
// ECDSA verification
|
|
// curve has to be &secp256k1
|
|
// public_key_bytes has 33 or 65 bytes
|
|
// signature_bytes has 64 bytes
|
|
// returns 0 if verification succeeded
|
|
int zkp_ecdsa_verify(const ecdsa_curve *curve, HasherType hasher_type,
|
|
const uint8_t *public_key_bytes,
|
|
const uint8_t *signature_bytes, const uint8_t *message,
|
|
uint32_t message_length) {
|
|
assert(curve == &secp256k1);
|
|
if (curve != &secp256k1) {
|
|
return 1;
|
|
}
|
|
|
|
uint8_t hash[32] = {0};
|
|
hasher_Raw(hasher_type, message, message_length, hash);
|
|
int result =
|
|
zkp_ecdsa_verify_digest(curve, public_key_bytes, signature_bytes, hash);
|
|
memzero(hash, sizeof(hash));
|
|
return result;
|
|
}
|