1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-15 01:40:57 +00:00
trezor-firmware/core/embed/bootloader/messages.c
2019-04-15 19:14:40 +02:00

639 lines
21 KiB
C

/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <pb.h>
#include <pb_decode.h>
#include <pb_encode.h>
#include "messages.pb.h"
#include "common.h"
#include "flash.h"
#include "image.h"
#include "secbool.h"
#include "usb.h"
#include "version.h"
#include "bootui.h"
#include "messages.h"
#include "memzero.h"
#define MSG_HEADER1_LEN 9
#define MSG_HEADER2_LEN 1
secbool msg_parse_header(const uint8_t *buf, uint16_t *msg_id,
uint32_t *msg_size) {
if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') {
return secfalse;
}
*msg_id = (buf[3] << 8) + buf[4];
*msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8];
return sectrue;
}
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t buf[USB_PACKET_SIZE];
} usb_write_state;
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf,
size_t count) {
usb_write_state *state = (usb_write_state *)(stream->state);
size_t written = 0;
// while we have data left
while (written < count) {
size_t remaining = count - written;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(state->buf + state->packet_pos, buf + written, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(state->buf + state->packet_pos, buf + written,
USB_PACKET_SIZE - state->packet_pos);
written += USB_PACKET_SIZE - state->packet_pos;
// send packet
int r = usb_webusb_write_blocking(state->iface_num, state->buf,
USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
// prepare new packet
state->packet_index++;
memzero(state->buf, USB_PACKET_SIZE);
state->buf[0] = '?';
state->packet_pos = MSG_HEADER2_LEN;
}
}
return true;
}
static void _usb_write_flush(usb_write_state *state) {
// if packet is not filled up completely
if (state->packet_pos < USB_PACKET_SIZE) {
// pad it with zeroes
memzero(state->buf + state->packet_pos,
USB_PACKET_SIZE - state->packet_pos);
}
// send packet
int r = usb_webusb_write_blocking(state->iface_num, state->buf,
USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
}
static secbool _send_msg(uint8_t iface_num, uint16_t msg_id,
const pb_field_t fields[], const void *msg) {
// determine message size by serializing it into a dummy stream
pb_ostream_t sizestream = {.callback = NULL,
.state = NULL,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL};
if (false == pb_encode(&sizestream, fields, msg)) {
return secfalse;
}
const uint32_t msg_size = sizestream.bytes_written;
usb_write_state state = {
.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf =
{
'?',
'#',
'#',
(msg_id >> 8) & 0xFF,
msg_id & 0xFF,
(msg_size >> 24) & 0xFF,
(msg_size >> 16) & 0xFF,
(msg_size >> 8) & 0xFF,
msg_size & 0xFF,
},
};
pb_ostream_t stream = {.callback = &_usb_write,
.state = &state,
.max_size = SIZE_MAX,
.bytes_written = 0,
.errmsg = NULL};
if (false == pb_encode(&stream, fields, msg)) {
return secfalse;
}
_usb_write_flush(&state);
return sectrue;
}
#define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default
#define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) \
{ \
msg_send.has_##FIELD = true; \
msg_send.FIELD = VALUE; \
}
#define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD, sizeof(msg_send.FIELD)); \
strncpy(msg_send.FIELD, VALUE, sizeof(msg_send.FIELD) - 1); \
}
#define MSG_SEND_ASSIGN_STRING_LEN(FIELD, VALUE, LEN) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD, sizeof(msg_send.FIELD)); \
strncpy(msg_send.FIELD, VALUE, MIN(LEN, sizeof(msg_send.FIELD) - 1)); \
}
#define MSG_SEND_ASSIGN_BYTES(FIELD, VALUE, LEN) \
{ \
msg_send.has_##FIELD = true; \
memzero(msg_send.FIELD.bytes, sizeof(msg_send.FIELD.bytes)); \
memcpy(msg_send.FIELD.bytes, VALUE, \
MIN(LEN, sizeof(msg_send.FIELD.bytes))); \
msg_send.FIELD.size = MIN(LEN, sizeof(msg_send.FIELD.bytes)); \
}
#define MSG_SEND(TYPE) \
_send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send)
typedef struct {
uint8_t iface_num;
uint8_t packet_index;
uint8_t packet_pos;
uint8_t *buf;
} usb_read_state;
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count) {
usb_read_state *state = (usb_read_state *)(stream->state);
size_t read = 0;
// while we have data left
while (read < count) {
size_t remaining = count - read;
// if all remaining data fit into our packet
if (state->packet_pos + remaining <= USB_PACKET_SIZE) {
// append data from buf to state->buf
memcpy(buf + read, state->buf + state->packet_pos, remaining);
// advance position
state->packet_pos += remaining;
// and return
return true;
} else {
// append data that fits
memcpy(buf + read, state->buf + state->packet_pos,
USB_PACKET_SIZE - state->packet_pos);
read += USB_PACKET_SIZE - state->packet_pos;
// read next packet
int r = usb_webusb_read_blocking(state->iface_num, state->buf,
USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
// prepare next packet
state->packet_index++;
state->packet_pos = MSG_HEADER2_LEN;
}
}
return true;
}
static void _usb_read_flush(usb_read_state *state) { (void)state; }
static secbool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const pb_field_t fields[], void *msg) {
usb_read_state state = {.iface_num = iface_num,
.packet_index = 0,
.packet_pos = MSG_HEADER1_LEN,
.buf = buf};
pb_istream_t stream = {.callback = &_usb_read,
.state = &state,
.bytes_left = msg_size,
.errmsg = NULL};
if (false == pb_decode_noinit(&stream, fields, msg)) {
return secfalse;
}
_usb_read_flush(&state);
return sectrue;
}
#define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default
#define MSG_RECV_CALLBACK(FIELD, CALLBACK) \
{ msg_recv.FIELD.funcs.decode = &CALLBACK; }
#define MSG_RECV(TYPE) \
_recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv)
void send_user_abort(uint8_t iface_num, const char *msg) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ActionCancelled);
MSG_SEND_ASSIGN_STRING(message, msg);
MSG_SEND(Failure);
}
static void send_msg_features(uint8_t iface_num,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_SEND_INIT(Features);
MSG_SEND_ASSIGN_STRING(vendor, "trezor.io");
MSG_SEND_ASSIGN_VALUE(major_version, VERSION_MAJOR);
MSG_SEND_ASSIGN_VALUE(minor_version, VERSION_MINOR);
MSG_SEND_ASSIGN_VALUE(patch_version, VERSION_PATCH);
MSG_SEND_ASSIGN_VALUE(bootloader_mode, true);
MSG_SEND_ASSIGN_STRING(model, "T");
if (vhdr && hdr) {
MSG_SEND_ASSIGN_VALUE(firmware_present, true);
MSG_SEND_ASSIGN_VALUE(fw_major, (hdr->version & 0xFF));
MSG_SEND_ASSIGN_VALUE(fw_minor, ((hdr->version >> 8) & 0xFF));
MSG_SEND_ASSIGN_VALUE(fw_patch, ((hdr->version >> 16) & 0xFF));
MSG_SEND_ASSIGN_STRING_LEN(fw_vendor, vhdr->vstr, vhdr->vstr_len);
uint8_t hash[32];
vendor_keys_hash(vhdr, hash);
MSG_SEND_ASSIGN_BYTES(fw_vendor_keys, hash, 32);
} else {
MSG_SEND_ASSIGN_VALUE(firmware_present, false);
}
MSG_SEND(Features);
}
void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_RECV_INIT(Initialize);
MSG_RECV(Initialize);
send_msg_features(iface_num, vhdr, hdr);
}
void process_msg_GetFeatures(uint8_t iface_num, uint32_t msg_size, uint8_t *buf,
const vendor_header *const vhdr,
const image_header *const hdr) {
MSG_RECV_INIT(GetFeatures);
MSG_RECV(GetFeatures);
send_msg_features(iface_num, vhdr, hdr);
}
void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
MSG_RECV_INIT(Ping);
MSG_RECV(Ping);
MSG_SEND_INIT(Success);
MSG_SEND_ASSIGN_STRING(message, msg_recv.message);
MSG_SEND(Success);
}
static uint32_t firmware_remaining, firmware_block, chunk_requested;
void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size,
uint8_t *buf) {
firmware_remaining = 0;
firmware_block = 0;
chunk_requested = 0;
MSG_RECV_INIT(FirmwareErase);
MSG_RECV(FirmwareErase);
firmware_remaining = msg_recv.has_length ? msg_recv.length : 0;
if ((firmware_remaining > 0) &&
((firmware_remaining % sizeof(uint32_t)) == 0) &&
(firmware_remaining <= (FIRMWARE_SECTORS_COUNT * IMAGE_CHUNK_SIZE))) {
// request new firmware
chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE)
? IMAGE_CHUNK_SIZE
: firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_VALUE(offset, 0);
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
// invalid firmware size
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size");
MSG_SEND(Failure);
}
}
static uint32_t chunk_size = 0;
// SRAM is unused, so we can use it for chunk buffer
uint8_t *const chunk_buffer = (uint8_t *const)0x20000000;
/* we don't use secbool/sectrue/secfalse here as it is a nanopb api */
static bool _read_payload(pb_istream_t *stream, const pb_field_t *field,
void **arg) {
#define BUFSIZE 32768
if (stream->bytes_left > IMAGE_CHUNK_SIZE) {
chunk_size = 0;
return false;
}
// clear chunk buffer
memset(chunk_buffer, 0xFF, IMAGE_CHUNK_SIZE);
uint32_t chunk_written = 0;
chunk_size = stream->bytes_left;
while (stream->bytes_left) {
// update loader but skip first block
if (firmware_block > 0) {
ui_screen_install_progress_upload(
250 + 750 * (firmware_block * IMAGE_CHUNK_SIZE + chunk_written) /
(firmware_block * IMAGE_CHUNK_SIZE + firmware_remaining));
}
// read data
if (!pb_read(
stream, (pb_byte_t *)(chunk_buffer + chunk_written),
(stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) {
chunk_size = 0;
return false;
}
chunk_written += BUFSIZE;
}
return true;
}
secbool load_vendor_header_keys(const uint8_t *const data,
vendor_header *const vhdr);
static int version_compare(uint32_t vera, uint32_t verb) {
int a, b;
a = vera & 0xFF;
b = verb & 0xFF;
if (a != b) return a - b;
a = (vera >> 8) & 0xFF;
b = (verb >> 8) & 0xFF;
if (a != b) return a - b;
a = (vera >> 16) & 0xFF;
b = (verb >> 16) & 0xFF;
if (a != b) return a - b;
a = (vera >> 24) & 0xFF;
b = (verb >> 24) & 0xFF;
return a - b;
}
static void detect_installation(vendor_header *current_vhdr,
image_header *current_hdr,
const vendor_header *const new_vhdr,
const image_header *const new_hdr,
secbool *is_new, secbool *is_upgrade) {
*is_new = secfalse;
*is_upgrade = secfalse;
if (sectrue !=
load_vendor_header_keys((const uint8_t *)FIRMWARE_START, current_vhdr)) {
*is_new = sectrue;
return;
}
if (sectrue !=
load_image_header((const uint8_t *)FIRMWARE_START + current_vhdr->hdrlen,
FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE,
current_vhdr->vsig_m, current_vhdr->vsig_n,
current_vhdr->vpub, current_hdr)) {
*is_new = sectrue;
return;
}
uint8_t hash1[32], hash2[32];
vendor_keys_hash(new_vhdr, hash1);
vendor_keys_hash(current_vhdr, hash2);
if (0 != memcmp(hash1, hash2, 32)) {
return;
}
if (version_compare(new_hdr->version, current_hdr->fix_version) < 0) {
return;
}
*is_upgrade = sectrue;
}
static int firmware_upload_chunk_retry = FIRMWARE_UPLOAD_CHUNK_RETRY_COUNT;
int process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size,
uint8_t *buf) {
MSG_RECV_INIT(FirmwareUpload);
MSG_RECV_CALLBACK(payload, _read_payload);
secbool r = MSG_RECV(FirmwareUpload);
if (sectrue != r || chunk_size != chunk_requested) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError);
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size");
MSG_SEND(Failure);
return -1;
}
static image_header hdr;
uint32_t firstskip = 0;
if (firmware_block == 0) {
vendor_header vhdr;
if (sectrue != load_vendor_header_keys(chunk_buffer, &vhdr)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid vendor header");
MSG_SEND(Failure);
return -2;
}
if (sectrue != load_image_header(chunk_buffer + vhdr.hdrlen,
FIRMWARE_IMAGE_MAGIC,
FIRMWARE_IMAGE_MAXSIZE, vhdr.vsig_m,
vhdr.vsig_n, vhdr.vpub, &hdr)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid firmware header");
MSG_SEND(Failure);
return -3;
}
vendor_header current_vhdr;
image_header current_hdr;
secbool is_new = secfalse, is_upgrade = secfalse;
detect_installation(&current_vhdr, &current_hdr, &vhdr, &hdr, &is_new,
&is_upgrade);
int response = INPUT_CANCEL;
if (sectrue == is_new) {
// new installation - auto confirm
response = INPUT_CONFIRM;
} else if (sectrue == is_upgrade) {
// firmware upgrade
ui_fadeout();
ui_screen_install_confirm_upgrade(&vhdr, &hdr);
ui_fadein();
response = ui_user_input(INPUT_CONFIRM | INPUT_CANCEL);
} else {
// new firmware vendor
ui_fadeout();
ui_screen_install_confirm_newvendor(&vhdr, &hdr);
ui_fadein();
response = ui_user_input(INPUT_CONFIRM | INPUT_CANCEL);
}
if (INPUT_CANCEL == response) {
ui_fadeout();
ui_screen_info(secfalse, &current_vhdr, &current_hdr);
ui_fadein();
send_user_abort(iface_num, "Firmware install cancelled");
return -4;
}
ui_fadeout();
ui_screen_install();
ui_fadein();
// if firmware is not upgrade, erase storage
if (sectrue != is_upgrade) {
ensure(flash_erase_sectors(STORAGE_SECTORS, STORAGE_SECTORS_COUNT, NULL),
NULL);
}
ensure(flash_erase_sectors(FIRMWARE_SECTORS, FIRMWARE_SECTORS_COUNT,
ui_screen_install_progress_erase),
NULL);
firstskip = IMAGE_HEADER_SIZE + vhdr.hdrlen;
}
// should not happen, but double-check
if (firmware_block >= FIRMWARE_SECTORS_COUNT) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Firmware too big");
MSG_SEND(Failure);
return -5;
}
if (sectrue != check_single_hash(hdr.hashes + firmware_block * 32,
chunk_buffer + firstskip,
chunk_size - firstskip)) {
if (firmware_upload_chunk_retry > 0) {
--firmware_upload_chunk_retry;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE);
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
return (int)firmware_remaining;
}
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Invalid chunk hash");
MSG_SEND(Failure);
return -6;
}
ensure(flash_unlock_write(), NULL);
const uint32_t *const src = (const uint32_t *const)chunk_buffer;
for (int i = 0; i < chunk_size / sizeof(uint32_t); i++) {
ensure(flash_write_word(FIRMWARE_SECTORS[firmware_block],
i * sizeof(uint32_t), src[i]),
NULL);
}
ensure(flash_lock_write(), NULL);
firmware_remaining -= chunk_requested;
firmware_block++;
firmware_upload_chunk_retry = FIRMWARE_UPLOAD_CHUNK_RETRY_COUNT;
if (firmware_remaining > 0) {
chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE)
? IMAGE_CHUNK_SIZE
: firmware_remaining;
MSG_SEND_INIT(FirmwareRequest);
MSG_SEND_ASSIGN_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE);
MSG_SEND_ASSIGN_VALUE(length, chunk_requested);
MSG_SEND(FirmwareRequest);
} else {
MSG_SEND_INIT(Success);
MSG_SEND(Success);
}
return (int)firmware_remaining;
}
int process_msg_WipeDevice(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
static const uint8_t sectors[] = {
FLASH_SECTOR_STORAGE_1,
FLASH_SECTOR_STORAGE_2,
// 3, // skip because of MPU protection
FLASH_SECTOR_FIRMWARE_START,
7,
8,
9,
10,
FLASH_SECTOR_FIRMWARE_END,
FLASH_SECTOR_UNUSED_START,
13,
14,
// FLASH_SECTOR_UNUSED_END, // skip because of MPU protection
FLASH_SECTOR_FIRMWARE_EXTRA_START,
18,
19,
20,
21,
22,
FLASH_SECTOR_FIRMWARE_EXTRA_END,
};
if (sectrue !=
flash_erase_sectors(sectors, sizeof(sectors), ui_screen_wipe_progress)) {
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError);
MSG_SEND_ASSIGN_STRING(message, "Could not erase flash");
MSG_SEND(Failure);
return -1;
} else {
MSG_SEND_INIT(Success);
MSG_SEND(Success);
return 0;
}
}
void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) {
// consume remaining message
int remaining_chunks = 0;
if (msg_size > (USB_PACKET_SIZE - MSG_HEADER1_LEN)) {
// calculate how many blocks need to be read to drain the message (rounded
// up to not leave any behind)
remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN) +
((USB_PACKET_SIZE - MSG_HEADER2_LEN) - 1)) /
(USB_PACKET_SIZE - MSG_HEADER2_LEN);
}
for (int i = 0; i < remaining_chunks; i++) {
int r =
usb_webusb_read_blocking(iface_num, buf, USB_PACKET_SIZE, USB_TIMEOUT);
ensure(sectrue * (r == USB_PACKET_SIZE), NULL);
}
MSG_SEND_INIT(Failure);
MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage);
MSG_SEND_ASSIGN_STRING(message, "Unexpected message");
MSG_SEND(Failure);
}