1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-01-09 06:50:58 +00:00
trezor-firmware/bitkeylib/client.py
2013-09-01 03:34:36 +02:00

225 lines
8.0 KiB
Python

import os
import time
import trezor_pb2 as proto
def show_message(message):
print "MESSAGE FROM DEVICE:", message
def show_input(input_text, message=None):
if message:
print "QUESTION FROM DEVICE:", message
return raw_input(input_text)
class CallException(Exception):
pass
class PinException(CallException):
pass
class BitkeyClient(object):
def __init__(self, transport, debuglink=None,
message_func=show_message, input_func=show_input, debug=False):
self.transport = transport
self.debuglink = debuglink
self.message_func = message_func
self.input_func = input_func
self.debug = debug
self.setup_debuglink()
self.init_device()
def _get_local_entropy(self):
return os.urandom(32)
def init_device(self):
self.master_public_key = None
self.features = self.call(proto.Initialize())
self.uuid = self.get_uuid()
def get_master_public_key(self):
if self.master_public_key:
return self.master_public_key
self.master_public_key = self.call(proto.GetMasterPublicKey()).key
return self.master_public_key
def get_address(self, n):
return self.call(proto.GetAddress(address_n=n)).address
def get_entropy(self, size):
return self.call(proto.GetEntropy(size=size)).entropy
def _pprint(self, msg):
return "<%s>:\n%s" % (msg.__class__.__name__, msg)
def setup_debuglink(self, button=None, pin_correct=False):
self.debug_button = button
self.debug_pin = pin_correct
def call(self, msg):
if self.debug:
print '----------------------'
print "Sending", self._pprint(msg)
self.transport.write(msg)
resp = self.transport.read_blocking()
if isinstance(resp, proto.ButtonRequest):
if self.debuglink and self.debug_button:
print "Pressing button", self.debug_button
self.debuglink.press_button(self.debug_button)
return self.call(proto.ButtonAck())
if isinstance(resp, proto.PinMatrixRequest):
if self.debuglink:
if self.debug_pin:
pin = self.debuglink.read_pin_encoded()
msg2 = proto.PinMatrixAck(pin=pin)
else:
msg2 = proto.PinMatrixAck(pin='444444222222')
else:
pin = self.input_func("PIN required: ", resp.message)
msg2 = proto.PinMatrixAck(pin=pin)
return self.call(msg2)
if isinstance(resp, proto.Failure):
self.message_func(resp.message)
if resp.code == 4:
raise CallException("Action cancelled by user")
elif resp.code == 6:
raise PinException("PIN is invalid")
raise CallException(resp.code, resp.message)
if self.debug:
print "Received", self._pprint(resp)
return resp
def ping(self, msg):
return self.call(proto.Ping(message=msg)).message
def get_uuid(self):
return self.call(proto.GetUUID()).UUID
def sign_tx(self, inputs, outputs):
'''
inputs: list of TxInput
outputs: list of TxOutput
proto.TxInput(index=0,
address_n=0,
amount=0,
prev_hash='',
prev_index=0,
#script_sig=
)
proto.TxOutput(index=0,
address='1Bitkey',
#address_n=[],
amount=100000000,
script_type=proto.PAYTOADDRESS,
#script_args=
)
'''
start = time.time()
# Prepare and send initial message
tx = proto.SignTx()
tx.random = self._get_local_entropy() # Provide additional entropy to the device
tx.inputs_count = len(inputs)
tx.outputs_count = len(outputs)
res = self.call(tx)
# Prepare structure for signatures
signatures = [None]*len(inputs)
serialized_tx = ''
counter = 0
while True:
counter += 1
if isinstance(res, proto.Failure):
raise CallException("Signing failed")
if not isinstance(res, proto.TxRequest):
raise CallException("Unexpected message")
# If there's some part of signed transaction, let's add it
if res.serialized_tx:
print "!!! RECEIVED PART OF SERIALIED TX (%d BYTES)" % len(res.serialized_tx)
serialized_tx += res.serialized_tx
if res.signed_index >= 0 and res.signature:
print "!!! SIGNED INPUT", res.signed_index
signatures[res.signed_index] = res.signature
if res.request_index < 0:
# Device didn't ask for more information, finish workflow
break
# Device asked for one more information, let's process it.
if res.request_type == proto.TXOUTPUT:
res = self.call(outputs[res.request_index])
continue
elif res.request_type == proto.TXINPUT:
print "REQUESTING", res.request_index
res = self.call(inputs[res.request_index])
continue
print "SIGNED IN %.03f SECONDS, CALLED %d MESSAGES, %d BYTES" % \
(time.time() - start, counter, len(serialized_tx))
return (signatures, serialized_tx)
#print "PBDATA", tx.SerializeToString().encode('hex')
#################
#################
#################
'''
signatures = [('add550d6ba9ab7e01d37e17658f98b6e901208d241f24b08197b5e20dfa7f29f095ae01acbfa5c4281704a64053dcb80e9b089ecbe09f5871d67725803e36edd', '3045022100dced96eeb43836bc95676879eac303eabf39802e513f4379a517475c259da12502201fd36c90ecd91a32b2ca8fed2e1755a7f2a89c2d520eb0da10147802bc7ca217')]
s_inputs = []
for i in range(len(inputs)):
addr, v, p_hash, p_pos, p_scriptPubKey, _, _ = inputs[i]
pubkey = signatures[i][0].decode('hex')
sig = signatures[i][1].decode('hex')
s_inputs.append((addr, v, p_hash, p_pos, p_scriptPubKey, pubkey, sig))
return s_inputs
s_inputs = []
for i in range(len(inputs)):
addr, v, p_hash, p_pos, p_scriptPubKey, _, _ = inputs[i]
private_key = ecdsa.SigningKey.from_string( self.get_private_key(addr, password), curve = SECP256k1 )
public_key = private_key.get_verifying_key()
pubkey = public_key.to_string()
tx = filter( raw_tx( inputs, outputs, for_sig = i ) )
sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
s_inputs.append( (addr, v, p_hash, p_pos, p_scriptPubKey, pubkey, sig) )
return s_inputs
'''
def reset_device(self):
# Begin with device reset workflow
raise Exception("Not implemented")
resp = self.call(proto.ResetDevice(random=self._get_local_entropy()))
self.init_device()
return isinstance(resp, proto.Success)
def load_device(self, seed, pin):
resp = self.call(proto.LoadDevice(seed=seed, pin=pin))
self.init_device()
return isinstance(resp, proto.Success)