1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2025-07-16 03:28:09 +00:00
trezor-firmware/legacy/firmware/ethereum_definitions.c
2022-12-02 14:38:09 +01:00

336 lines
12 KiB
C

/*
* This file is part of the Trezor project, https://trezor.io/
*
* Copyright (C) 2022 Martin Novak <martin.novak@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdbool.h>
#include <string.h>
#include "crypto.h"
#include "ethereum.h"
#include "ethereum_definitions.h"
#include "ethereum_networks.h"
#include "ethereum_tokens.h"
#include "fsm.h"
#include "gettext.h"
#include "memzero.h"
#include "messages.h"
#include "pb.h"
#include "pb_decode.h"
#include "trezor.h" // because of the "VERSTR" macro used in "fsm_sendFailureDebug" function
#include "util.h"
static const uint8_t DEFINITIONS_PUBLIC_KEY[] =
" ";
#if DEBUG_LINK
static const uint8_t DEFINITIONS_DEV_PUBLIC_KEY[] =
"\xdb\x99\x5f\xe2\x51\x69\xd1\x41\xca\xb9\xbb\xba\x92\xba\xa0\x1f\x9f\x2e"
"\x1e\xce\x7d\xf4\xcb\x2a\xc0\x51\x90\xf3\x7f\xcc\x1f\x9d";
#endif
#define MIN_DATA_VERSION 1
#define FORMAT_VERSION_LENGTH 8
#define FORMAT_VERSION (const pb_byte_t *)"trzd1\x00\x00\x00"
#define MERKLE_TREE_SIGNED_ROOT_SIZE 64
#define HASH_DATA_BUFFER_SIZE \
(1 + MAX(EthereumEncodedDefinitions_size / 2, 2 * SHA256_DIGEST_LENGTH))
typedef struct {
// prefix
pb_size_t format_version_start;
uint8_t definition_type;
uint32_t data_version;
uint16_t payload_length_in_bytes;
// payload
pb_size_t payload_start;
// suffix
uint8_t proof_length;
pb_size_t proof_start;
ed25519_signature signed_root_hash;
} ParsedEncodedEthereumDefinitions;
const ParsedEncodedEthereumDefinitions *_parse_encoded_EthereumDefinitions(
const pb_size_t size, const pb_byte_t *bytes) {
static ParsedEncodedEthereumDefinitions parsed;
// format version + definition type + data version + payload length + payload
// (at least 1B) + proof length + signed Merkle tree root hash
if (size < (FORMAT_VERSION_LENGTH + 1 + 4 + 2 + 1 + 1 +
MERKLE_TREE_SIGNED_ROOT_SIZE)) {
return (const ParsedEncodedEthereumDefinitions *const)NULL;
}
pb_size_t actual_position = 0;
parsed.format_version_start = actual_position;
actual_position += FORMAT_VERSION_LENGTH;
parsed.definition_type = bytes[actual_position];
actual_position += 1;
parsed.data_version = read_be(&bytes[actual_position]);
actual_position += 4;
parsed.payload_length_in_bytes = (((uint16_t)bytes[actual_position]) << 8) |
(((uint16_t)bytes[actual_position + 1]));
actual_position += 2;
if (size < actual_position - 1) {
return (const ParsedEncodedEthereumDefinitions *const)NULL;
}
parsed.payload_start = actual_position;
actual_position += parsed.payload_length_in_bytes;
if (size < actual_position - 1) {
return (const ParsedEncodedEthereumDefinitions *const)NULL;
}
parsed.proof_length = bytes[actual_position];
actual_position += 1;
if (size < actual_position - 1) {
return (const ParsedEncodedEthereumDefinitions *const)NULL;
}
parsed.proof_start = actual_position;
actual_position += parsed.proof_length * SHA256_DIGEST_LENGTH;
if (size < actual_position + MERKLE_TREE_SIGNED_ROOT_SIZE - 1) {
return (const ParsedEncodedEthereumDefinitions *const)NULL;
}
memcpy(&parsed.signed_root_hash, &bytes[actual_position],
MERKLE_TREE_SIGNED_ROOT_SIZE);
return (const ParsedEncodedEthereumDefinitions *const)&parsed;
}
bool _decode_definition(const pb_size_t size, const pb_byte_t *bytes,
const EthereumDefinitionType expected_type,
void *definition) {
// parse received definition
const ParsedEncodedEthereumDefinitions *parsed_def =
_parse_encoded_EthereumDefinitions(size, bytes);
if (!parsed_def) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Invalid Ethereum definition."));
return false;
}
// check definition fields
if (memcmp(FORMAT_VERSION, &bytes[parsed_def->format_version_start],
FORMAT_VERSION_LENGTH)) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Used different Ethereum definition format version."));
return false;
}
if (expected_type != parsed_def->definition_type) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Definition of invalid type for Ethereum."));
return false;
}
if (MIN_DATA_VERSION > parsed_def->data_version) {
fsm_sendFailure(FailureType_Failure_DataError,
_("Used Ethereum definition data version too low."));
return false;
}
// compute Merkle tree root hash from proof
uint8_t hash[SHA256_DIGEST_LENGTH] = {0};
uint8_t hash_data[HASH_DATA_BUFFER_SIZE];
memzero(hash_data, HASH_DATA_BUFFER_SIZE);
// leaf hash = sha256('\x00' + leaf data)
memcpy(&hash_data[1], bytes,
parsed_def->payload_start + parsed_def->payload_length_in_bytes);
sha256_Raw(
hash_data,
1 + parsed_def->payload_start + parsed_def->payload_length_in_bytes,
hash);
pb_size_t index = parsed_def->proof_start;
int cmp = 0;
const void *min, *max;
for (uint8_t i = 0; i < parsed_def->proof_length; i++) {
memzero(hash_data, HASH_DATA_BUFFER_SIZE);
// node hash = sha256('\x01' + min(hash, next_proof) + max(hash,
// next_proof))
hash_data[0] = '\x01';
cmp = memcmp(hash, &bytes[index], SHA256_DIGEST_LENGTH);
min = cmp < 1 ? hash : &bytes[index];
max = cmp > 0 ? hash : &bytes[index];
memcpy(&hash_data[1], min, SHA256_DIGEST_LENGTH);
memcpy(&hash_data[1 + SHA256_DIGEST_LENGTH], max, SHA256_DIGEST_LENGTH);
sha256_Raw(hash_data, 1 + SHA256_DIGEST_LENGTH * 2, hash);
index += SHA256_DIGEST_LENGTH;
}
// and verify its signature
if (ed25519_sign_open(hash, SHA256_DIGEST_LENGTH, DEFINITIONS_PUBLIC_KEY,
parsed_def->signed_root_hash) != 0
#if DEBUG_LINK
&&
ed25519_sign_open(hash, SHA256_DIGEST_LENGTH, DEFINITIONS_DEV_PUBLIC_KEY,
parsed_def->signed_root_hash) != 0
#endif
) {
// invalid signature
fsm_sendFailure(FailureType_Failure_DataError,
_("Ethereum definition signature is invalid."));
return false;
}
// decode message
const pb_msgdesc_t *fields = (expected_type == EthereumDefinitionType_NETWORK
? EthereumNetworkInfo_fields
: EthereumTokenInfo_fields);
memzero(definition, sizeof(definition));
pb_istream_t stream = pb_istream_from_buffer(
&bytes[parsed_def->payload_start], parsed_def->payload_length_in_bytes);
bool status = pb_decode(&stream, fields, definition);
if (!status) {
// invalid message
fsm_sendFailure(FailureType_Failure_DataError, stream.errmsg);
return false;
}
return true;
}
void _set_EthereumNetworkInfo_to_builtin(const uint64_t ref_chain_id,
EthereumNetworkInfo *network) {
network->chain_id = ref_chain_id;
network->slip44 = ethereum_slip44_by_chain_id(ref_chain_id);
memzero(network->shortcut, sizeof(network->shortcut));
const char *sc = get_ethereum_suffix(ref_chain_id);
strncpy(network->shortcut, sc, sizeof(network->shortcut) - 1);
memzero(network->name, sizeof(network->name));
// network->rskip60 is skipped, it is resolved where it is needed (using
// switch with hardcoded values)
}
bool _get_EthereumNetworkInfo(
const EthereumEncodedDefinitions_encoded_network_t *encoded_network,
const uint64_t ref_chain_id, EthereumNetworkInfo *network) {
// try to get built-in definition
_set_EthereumNetworkInfo_to_builtin(ref_chain_id, network);
// if we still do not have any network definition try to decode the received
// one
if (strncmp(network->shortcut, UNKNOWN_NETWORK_SHORTCUT,
sizeof(network->shortcut)) == 0 &&
encoded_network != NULL) {
if (_decode_definition(encoded_network->size, encoded_network->bytes,
EthereumDefinitionType_NETWORK, (void *)network)) {
if (ref_chain_id != CHAIN_ID_UNKNOWN &&
network->chain_id != ref_chain_id) {
// chain_id mismatch - error and reset definition
fsm_sendFailure(FailureType_Failure_DataError,
_("Invalid network definition - chain IDs not equal."));
_set_EthereumNetworkInfo_to_builtin(ref_chain_id, network);
} else {
// chain_id does match the reference one (if provided) so prepend one
// space character to symbol, terminate it (encoded definitions does not
// have space prefix) and return the decoded data
memmove(&network->shortcut[1], &network->shortcut,
sizeof(network->shortcut) - 2);
network->shortcut[0] = ' ';
network->shortcut[sizeof(network->shortcut) - 1] = 0;
return true;
}
} else {
// decoding failed - reset network definition
_set_EthereumNetworkInfo_to_builtin(ref_chain_id, network);
}
}
return network->chain_id == CHAIN_ID_UNKNOWN ? false : true;
}
void _get_EthereumTokenInfo(
const EthereumEncodedDefinitions_encoded_token_t *encoded_token,
const uint64_t ref_chain_id, const char *ref_address,
EthereumTokenInfo *token) {
EthereumTokenInfo_address_t ref_address_bytes;
const EthereumTokenInfo *builtin = UnknownToken;
// convert ref_address string to bytes
bool address_parsed =
ref_address && ethereum_parse(ref_address, ref_address_bytes.bytes);
// try to get built-in definition
if (address_parsed) {
builtin = tokenByChainAddress(ref_chain_id, ref_address_bytes.bytes);
}
// if we do not have any token definition try to decode the received one
if (builtin == UnknownToken && encoded_token != NULL) {
if (_decode_definition(encoded_token->size, encoded_token->bytes,
EthereumDefinitionType_TOKEN, (void *)token)) {
if ((ref_chain_id == CHAIN_ID_UNKNOWN ||
token->chain_id == ref_chain_id) &&
(!address_parsed ||
!memcmp(token->address.bytes, ref_address_bytes.bytes,
sizeof(token->address.bytes)))) {
// chain_id and/or address does match the reference ones (if provided)
// so prepend one space character to symbol, terminate it (encoded
// definitions does not have space prefix) and return the decoded data
memmove(&token->symbol[1], &token->symbol, sizeof(token->symbol) - 2);
token->symbol[0] = ' ';
token->symbol[sizeof(token->symbol) - 1] = 0;
return;
}
}
}
// decoding did not happen or failed, so we have to copy the data to the
// result reset token definition
memzero(token->symbol, sizeof(token->symbol));
token->decimals = 0;
memzero(token->address.bytes, sizeof(token->address.bytes));
token->address.size = 0;
token->chain_id = CHAIN_ID_UNKNOWN;
memzero(token->name, sizeof(token->name));
// copy data to token definition
strncpy(token->symbol, builtin->symbol, sizeof(token->symbol) - 1);
token->decimals = builtin->decimals;
memcpy(token->address.bytes, builtin->address.bytes,
sizeof(token->address.bytes));
token->address.size = sizeof(token->address.bytes);
token->chain_id = builtin->chain_id;
}
const EthereumDefinitions *get_EthereumDefinitions(
const EthereumEncodedDefinitions_encoded_network_t *encoded_network,
const EthereumEncodedDefinitions_encoded_token_t *encoded_token,
const uint64_t ref_chain_id, const char *ref_address) {
static EthereumDefinitions defs;
if (_get_EthereumNetworkInfo(encoded_network, ref_chain_id, &defs.network)) {
// we have found network definition, we can try to load token definition
_get_EthereumTokenInfo(encoded_token, ref_chain_id, ref_address,
&defs.token);
} else {
// if we did not find any network definition, set token definition to
// unknown token
_get_EthereumTokenInfo(NULL, CHAIN_ID_UNKNOWN, NULL, &defs.token);
}
return &defs;
}