1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-12-16 11:28:14 +00:00
trezor-firmware/crypto/tests/test_curves.py
Tomas Susanka 456d98ac03 all: style
2019-04-23 14:41:59 +02:00

508 lines
12 KiB
Python
Executable File

#!/usr/bin/py.test
import binascii
import ctypes as c
import hashlib
import os
import random
import curve25519
import ecdsa
import pytest
def bytes2num(s):
res = 0
for i, b in enumerate(reversed(bytearray(s))):
res += b << (i * 8)
return res
curves = {"nist256p1": ecdsa.curves.NIST256p, "secp256k1": ecdsa.curves.SECP256k1}
class Point:
def __init__(self, name, x, y):
self.curve = name
self.x = x
self.y = y
points = [
Point(
"secp256k1",
0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,
0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8,
),
Point(
"secp256k1",
0x1,
0x4218F20AE6C646B363DB68605822FB14264CA8D2587FDD6FBC750D587E76A7EE,
),
Point(
"secp256k1",
0x2,
0x66FBE727B2BA09E09F5A98D70A5EFCE8424C5FA425BBDA1C511F860657B8535E,
),
Point(
"secp256k1",
0x1B,
0x1ADCEA1CF831B0AD1653E769D1A229091D0CC68D4B0328691B9CAACC76E37C90,
),
Point(
"nist256p1",
0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296,
0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5,
),
Point(
"nist256p1",
0x0,
0x66485C780E2F83D72433BD5D84A06BB6541C2AF31DAE871728BF856A174F93F4,
),
Point(
"nist256p1",
0x0,
0x99B7A386F1D07C29DBCC42A27B5F9449ABE3D50DE25178E8D7407A95E8B06C0B,
),
Point(
"nist256p1",
0xAF8BBDFE8CDD5577ACBF345B543D28CF402F4E94D3865B97EA0787F2D3AA5D22,
0x35802B8B376B995265918B078BC109C21A535176585C40F519ACA52D6AFC147C,
),
Point(
"nist256p1",
0x80000,
0x580610071F440F0DCC14A22E2D5D5AFC1224C0CD11A3B4B51B8ECD2224EE1CE2,
),
]
random_iters = int(os.environ.get("ITERS", 1))
DIR = os.path.abspath(os.path.dirname(__file__))
lib = c.cdll.LoadLibrary(os.path.join(DIR, "libtrezor-crypto.so"))
class curve_info(c.Structure):
_fields_ = [("bip32_name", c.c_char_p), ("params", c.c_void_p)]
lib.get_curve_by_name.restype = c.POINTER(curve_info)
BIGNUM = c.c_uint32 * 9
class Random(random.Random):
def randbytes(self, n):
buf = (c.c_uint8 * n)()
for i in range(n):
buf[i] = self.randrange(0, 256)
return buf
def randpoint(self, curve):
k = self.randrange(0, curve.order)
return k * curve.generator
def int2bn(x, bn_type=BIGNUM):
b = bn_type()
b._int = x
for i in range(len(b)):
b[i] = x % (1 << 30)
x = x >> 30
return b
def bn2int(b):
x = 0
for i in range(len(b)):
x += b[i] << (30 * i)
return x
@pytest.fixture(params=range(random_iters))
def r(request):
seed = request.param
return Random(seed + int(os.environ.get("SEED", 0)))
@pytest.fixture(params=list(sorted(curves)))
def curve(request):
name = request.param
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
assert curve_ptr, "curve {} not found".format(name)
curve_obj = curves[name]
curve_obj.ptr = c.c_void_p(curve_ptr)
curve_obj.p = curve_obj.curve.p() # shorthand
return curve_obj
@pytest.fixture(params=points)
def point(request):
name = request.param.curve
curve_ptr = lib.get_curve_by_name(bytes(name, "ascii")).contents.params
assert curve_ptr, "curve {} not found".format(name)
curve_obj = curves[name]
curve_obj.ptr = c.c_void_p(curve_ptr)
curve_obj.p = ecdsa.ellipticcurve.Point(
curve_obj.curve, request.param.x, request.param.y
)
return curve_obj
def test_inverse(curve, r):
x = r.randrange(1, curve.p)
y = int2bn(x)
lib.bn_inverse(y, int2bn(curve.p))
y = bn2int(y)
y_ = ecdsa.numbertheory.inverse_mod(x, curve.p)
assert y == y_
def test_is_less(curve, r):
x = r.randrange(0, curve.p)
y = r.randrange(0, curve.p)
x_ = int2bn(x)
y_ = int2bn(y)
res = lib.bn_is_less(x_, y_)
assert res == (x < y)
res = lib.bn_is_less(y_, x_)
assert res == (y < x)
def test_is_equal(curve, r):
x = r.randrange(0, curve.p)
y = r.randrange(0, curve.p)
x_ = int2bn(x)
y_ = int2bn(y)
assert lib.bn_is_equal(x_, y_) == (x == y)
assert lib.bn_is_equal(x_, x_) == 1
assert lib.bn_is_equal(y_, y_) == 1
def test_is_zero(curve, r):
x = r.randrange(0, curve.p)
assert lib.bn_is_zero(int2bn(x)) == (not x)
def test_simple_comparisons():
assert lib.bn_is_zero(int2bn(0)) == 1
assert lib.bn_is_zero(int2bn(1)) == 0
assert lib.bn_is_less(int2bn(0), int2bn(0)) == 0
assert lib.bn_is_less(int2bn(1), int2bn(0)) == 0
assert lib.bn_is_less(int2bn(0), int2bn(1)) == 1
assert lib.bn_is_equal(int2bn(0), int2bn(0)) == 1
assert lib.bn_is_equal(int2bn(1), int2bn(0)) == 0
assert lib.bn_is_equal(int2bn(0), int2bn(1)) == 0
def test_mult_half(curve, r):
x = r.randrange(0, 2 * curve.p)
y = int2bn(x)
lib.bn_mult_half(y, int2bn(curve.p))
y = bn2int(y)
if y >= curve.p:
y -= curve.p
half = ecdsa.numbertheory.inverse_mod(2, curve.p)
assert y == (x * half) % curve.p
def test_subtractmod(curve, r):
x = r.randrange(0, 2 ** 256)
y = r.randrange(0, 2 ** 256)
z = int2bn(0)
lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p))
z = bn2int(z)
z_ = x + 2 * curve.p - y
assert z == z_
def test_subtract2(r):
x = r.randrange(0, 2 ** 256)
y = r.randrange(0, 2 ** 256)
x, y = max(x, y), min(x, y)
z = int2bn(0)
lib.bn_subtract(int2bn(x), int2bn(y), z)
z = bn2int(z)
z_ = x - y
assert z == z_
def test_add(curve, r):
x = r.randrange(0, 2 ** 256)
y = r.randrange(0, 2 ** 256)
z_ = x + y
z = int2bn(x)
lib.bn_add(z, int2bn(y))
z = bn2int(z)
assert z == z_
def test_addmod(curve, r):
x = r.randrange(0, 2 ** 256)
y = r.randrange(0, 2 ** 256)
z_ = (x + y) % curve.p
z = int2bn(x)
lib.bn_addmod(z, int2bn(y), int2bn(curve.p))
z = bn2int(z)
if z >= curve.p:
z = z - curve.p
assert z == z_
def test_multiply(curve, r):
k = r.randrange(0, 2 * curve.p)
x = r.randrange(0, 2 * curve.p)
z = (k * x) % curve.p
k = int2bn(k)
z_ = int2bn(x)
p_ = int2bn(curve.p)
lib.bn_multiply(k, z_, p_)
z_ = bn2int(z_)
assert z_ < 2 * curve.p
if z_ >= curve.p:
z_ = z_ - curve.p
assert z_ == z
def test_multiply1(curve, r):
k = r.randrange(0, 2 * curve.p)
x = r.randrange(0, 2 * curve.p)
kx = k * x
res = int2bn(0, bn_type=(c.c_uint32 * 18))
lib.bn_multiply_long(int2bn(k), int2bn(x), res)
res = bn2int(res)
assert res == kx
def test_multiply2(curve, r):
x = int2bn(0)
s = r.randrange(0, 2 ** 526)
res = int2bn(s, bn_type=(c.c_uint32 * 18))
prime = int2bn(curve.p)
lib.bn_multiply_reduce(x, res, prime)
x = bn2int(x) % curve.p
x_ = s % curve.p
assert x == x_
def test_fast_mod(curve, r):
x = r.randrange(0, 128 * curve.p)
y = int2bn(x)
lib.bn_fast_mod(y, int2bn(curve.p))
y = bn2int(y)
assert y < 2 * curve.p
if y >= curve.p:
y -= curve.p
assert x % curve.p == y
def test_mod(curve, r):
x = r.randrange(0, 2 * curve.p)
y = int2bn(x)
lib.bn_mod(y, int2bn(curve.p))
assert bn2int(y) == x % curve.p
def test_mod_specific(curve):
p = curve.p
for x in [0, 1, 2, p - 2, p - 1, p, p + 1, p + 2, 2 * p - 2, 2 * p - 1]:
y = int2bn(x)
lib.bn_mod(y, int2bn(curve.p))
assert bn2int(y) == x % p
POINT = BIGNUM * 2
def to_POINT(p):
return POINT(int2bn(p.x()), int2bn(p.y()))
def from_POINT(p):
return (bn2int(p[0]), bn2int(p[1]))
JACOBIAN = BIGNUM * 3
def to_JACOBIAN(jp):
return JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2]))
def from_JACOBIAN(p):
return (bn2int(p[0]), bn2int(p[1]), bn2int(p[2]))
def test_point_multiply(curve, r):
p = r.randpoint(curve)
k = r.randrange(0, 2 ** 256)
kp = k * p
res = POINT(int2bn(0), int2bn(0))
lib.point_multiply(curve.ptr, int2bn(k), to_POINT(p), res)
res = from_POINT(res)
assert res == (kp.x(), kp.y())
def test_point_add(curve, r):
p1 = r.randpoint(curve)
p2 = r.randpoint(curve)
# print '-' * 80
q = p1 + p2
q1 = to_POINT(p1)
q2 = to_POINT(p2)
lib.point_add(curve.ptr, q1, q2)
q_ = from_POINT(q2)
assert q_ == (q.x(), q.y())
def test_point_double(curve, r):
p = r.randpoint(curve)
q = p.double()
q_ = to_POINT(p)
lib.point_double(curve.ptr, q_)
q_ = from_POINT(q_)
assert q_ == (q.x(), q.y())
def test_point_to_jacobian(curve, r):
p = r.randpoint(curve)
jp = JACOBIAN()
lib.curve_to_jacobian(to_POINT(p), jp, int2bn(curve.p))
jx, jy, jz = from_JACOBIAN(jp)
assert jx % curve.p == (p.x() * jz ** 2) % curve.p
assert jy % curve.p == (p.y() * jz ** 3) % curve.p
q = POINT()
lib.jacobian_to_curve(jp, q, int2bn(curve.p))
q = from_POINT(q)
assert q == (p.x(), p.y())
def test_cond_negate(curve, r):
x = r.randrange(0, curve.p)
a = int2bn(x)
lib.conditional_negate(0, a, int2bn(curve.p))
assert bn2int(a) == x
lib.conditional_negate(-1, a, int2bn(curve.p))
assert bn2int(a) == 2 * curve.p - x
def test_jacobian_add(curve, r):
p1 = r.randpoint(curve)
p2 = r.randpoint(curve)
prime = int2bn(curve.p)
q = POINT()
jp2 = JACOBIAN()
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
lib.jacobian_to_curve(jp2, q, prime)
q = from_POINT(q)
p_ = p1 + p2
assert (p_.x(), p_.y()) == q
def test_jacobian_add_double(curve, r):
p1 = r.randpoint(curve)
p2 = p1
prime = int2bn(curve.p)
q = POINT()
jp2 = JACOBIAN()
lib.curve_to_jacobian(to_POINT(p2), jp2, prime)
lib.point_jacobian_add(to_POINT(p1), jp2, curve.ptr)
lib.jacobian_to_curve(jp2, q, prime)
q = from_POINT(q)
p_ = p1 + p2
assert (p_.x(), p_.y()) == q
def test_jacobian_double(curve, r):
p = r.randpoint(curve)
p2 = p.double()
prime = int2bn(curve.p)
q = POINT()
jp = JACOBIAN()
lib.curve_to_jacobian(to_POINT(p), jp, prime)
lib.point_jacobian_double(jp, curve.ptr)
lib.jacobian_to_curve(jp, q, prime)
q = from_POINT(q)
assert (p2.x(), p2.y()) == q
def sigdecode(sig, _):
return map(bytes2num, [sig[:32], sig[32:]])
def test_sign(curve, r):
priv = r.randbytes(32)
digest = r.randbytes(32)
sig = r.randbytes(64)
lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0), c.c_void_p(0))
exp = bytes2num(priv)
sk = ecdsa.SigningKey.from_secret_exponent(exp, curve, hashfunc=hashlib.sha256)
vk = sk.get_verifying_key()
sig_ref = sk.sign_digest_deterministic(
digest, hashfunc=hashlib.sha256, sigencode=ecdsa.util.sigencode_string_canonize
)
assert binascii.hexlify(sig) == binascii.hexlify(sig_ref)
assert vk.verify_digest(sig, digest, sigdecode)
def test_validate_pubkey(curve, r):
p = r.randpoint(curve)
assert lib.ecdsa_validate_pubkey(curve.ptr, to_POINT(p))
def test_validate_pubkey_direct(point):
assert lib.ecdsa_validate_pubkey(point.ptr, to_POINT(point.p))
def test_curve25519(r):
sec1 = bytes(bytearray(r.randbytes(32)))
sec2 = bytes(bytearray(r.randbytes(32)))
pub1 = curve25519.Private(sec1).get_public()
pub2 = curve25519.Private(sec2).get_public()
session1 = r.randbytes(32)
lib.curve25519_scalarmult(session1, sec2, pub1.public)
session2 = r.randbytes(32)
lib.curve25519_scalarmult(session2, sec1, pub2.public)
assert bytearray(session1) == bytearray(session2)
shared1 = curve25519.Private(sec2).get_shared_key(pub1, hashfunc=lambda x: x)
shared2 = curve25519.Private(sec1).get_shared_key(pub2, hashfunc=lambda x: x)
assert shared1 == shared2
assert bytearray(session1) == shared1
assert bytearray(session2) == shared2
def test_curve25519_pubkey(r):
sec = bytes(bytearray(r.randbytes(32)))
pub = curve25519.Private(sec).get_public()
res = r.randbytes(32)
lib.curve25519_scalarmult_basepoint(res, sec)
assert bytearray(res) == pub.public
def test_curve25519_scalarmult_from_gpg(r):
sec = binascii.unhexlify(
"4a1e76f133afb29dbc7860bcbc16d0e829009cc15c2f81ed26de1179b1d9c938"
)
pub = binascii.unhexlify(
"5d6fc75c016e85b17f54e0128a216d5f9229f25bac1ec85cecab8daf48621b31"
)
res = r.randbytes(32)
lib.curve25519_scalarmult(res, sec[::-1], pub[::-1])
expected = "a93dbdb23e5c99da743e203bd391af79f2b83fb8d0fd6ec813371c71f08f2d4d"
assert binascii.hexlify(bytearray(res)) == bytes(expected, "ascii")