1
0
mirror of https://github.com/trezor/trezor-firmware.git synced 2024-11-14 03:30:02 +00:00
trezor-firmware/firmware/signing.c
Jochen Hoenicke 1bc1bb1e77 Less paranoid change outputs.
- Allow change to be on the main chain (see spesmilo/electrum#3920).
- Allow more than one output to the Trezor, but don't treat it as change.
2018-02-20 16:39:16 +01:00

1162 lines
38 KiB
C

/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "signing.h"
#include "fsm.h"
#include "layout2.h"
#include "messages.h"
#include "transaction.h"
#include "ecdsa.h"
#include "protect.h"
#include "crypto.h"
#include "secp256k1.h"
#include "gettext.h"
static uint32_t inputs_count;
static uint32_t outputs_count;
static const CoinInfo *coin;
static const HDNode *root;
static CONFIDENTIAL HDNode node;
static bool signing = false;
enum {
STAGE_REQUEST_1_INPUT,
STAGE_REQUEST_2_PREV_META,
STAGE_REQUEST_2_PREV_INPUT,
STAGE_REQUEST_2_PREV_OUTPUT,
STAGE_REQUEST_2_PREV_EXTRADATA,
STAGE_REQUEST_3_OUTPUT,
STAGE_REQUEST_4_INPUT,
STAGE_REQUEST_4_OUTPUT,
STAGE_REQUEST_SEGWIT_INPUT,
STAGE_REQUEST_5_OUTPUT,
STAGE_REQUEST_SEGWIT_WITNESS
} signing_stage;
static uint32_t idx1, idx2;
static uint32_t signatures;
static TxRequest resp;
static TxInputType input;
static TxOutputBinType bin_output;
static TxStruct to, tp, ti;
static Hasher hashers[3];
static uint8_t CONFIDENTIAL privkey[32];
static uint8_t pubkey[33], sig[64];
static uint8_t hash_prevouts[32], hash_sequence[32],hash_outputs[32];
static uint8_t hash_check[32];
static uint64_t to_spend, authorized_amount, spending, change_spend;
static uint32_t version = 1;
static uint32_t lock_time = 0;
static uint32_t next_nonsegwit_input;
static uint32_t progress, progress_step, progress_meta_step;
static bool multisig_fp_set, multisig_fp_mismatch;
static uint8_t multisig_fp[32];
static uint32_t in_address_n[8];
static size_t in_address_n_count;
static uint32_t tx_weight;
/* A marker for in_address_n_count to indicate a mismatch in bip32 paths in
input */
#define BIP32_NOCHANGEALLOWED 1
/* The number of bip32 levels used in a wallet (chain and address) */
#define BIP32_WALLET_DEPTH 2
/* The chain id used for change */
#define BIP32_CHANGE_CHAIN 1
/* The maximum allowed change address. This should be large enough for normal
use and still allow to quickly brute-force the correct bip32 path. */
#define BIP32_MAX_LAST_ELEMENT 1000000
/* transaction header size: 4 byte version */
#define TXSIZE_HEADER 4
/* transaction footer size: 4 byte lock time */
#define TXSIZE_FOOTER 4
/* transaction segwit overhead 2 marker */
#define TXSIZE_SEGWIT_OVERHEAD 2
enum {
SIGHASH_ALL = 1,
SIGHASH_FORKID = 0x40,
};
/* progress_step/meta_step are fixed point numbers, giving the
* progress per input in permille with these many additional bits.
*/
#define PROGRESS_PRECISION 16
/*
Workflow of streamed signing
The STAGE_ constants describe the signing_stage when request is sent.
I - input
O - output
Phase1 - check inputs, previous transactions, and outputs
- ask for confirmations
- check fee
=========================================================
foreach I (idx1):
Request I STAGE_REQUEST_1_INPUT
Add I to segwit hash_prevouts, hash_sequence
Add I to TransactionChecksum (prevout and type)
If not segwit, Calculate amount of I:
Request prevhash I, META STAGE_REQUEST_2_PREV_META
foreach prevhash I (idx2):
Request prevhash I STAGE_REQUEST_2_PREV_INPUT
foreach prevhash O (idx2):
Request prevhash O STAGE_REQUEST_2_PREV_OUTPUT
Add amount of prevhash O (which is amount of I)
Request prevhash extra data (if applicable) STAGE_REQUEST_2_PREV_EXTRADATA
Calculate hash of streamed tx, compare to prevhash I
foreach O (idx1):
Request O STAGE_REQUEST_3_OUTPUT
Add O to TransactionChecksum
Display output
Ask for confirmation
Check tx fee
Ask for confirmation
Phase2: sign inputs, check that nothing changed
===============================================
foreach I (idx1): // input to sign
if (idx1 is segwit)
Request I STAGE_REQUEST_SEGWIT_INPUT
Return serialized input chunk
else
foreach I (idx2):
Request I STAGE_REQUEST_4_INPUT
If idx1 == idx2
Remember key for signing
Fill scriptsig
Add I to StreamTransactionSign
Add I to TransactionChecksum
foreach O (idx2):
Request O STAGE_REQUEST_4_OUTPUT
Add O to StreamTransactionSign
Add O to TransactionChecksum
Compare TransactionChecksum with checksum computed in Phase 1
If different:
Failure
Sign StreamTransactionSign
Return signed chunk
foreach O (idx1):
Request O STAGE_REQUEST_5_OUTPUT
Rewrite change address
Return O
Phase3: sign segwit inputs, check that nothing changed
===============================================
foreach I (idx1): // input to sign
Request I STAGE_REQUEST_SEGWIT_WITNESS
Check amount
Sign segwit prevhash, sequence, amount, outputs
Return witness
*/
void send_req_1_input(void)
{
signing_stage = STAGE_REQUEST_1_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_2_prev_meta(void)
{
signing_stage = STAGE_REQUEST_2_PREV_META;
resp.has_request_type = true;
resp.request_type = RequestType_TXMETA;
resp.has_details = true;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, input.prev_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_2_prev_input(void)
{
signing_stage = STAGE_REQUEST_2_PREV_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_2_prev_output(void)
{
signing_stage = STAGE_REQUEST_2_PREV_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_2_prev_extradata(uint32_t chunk_offset, uint32_t chunk_len)
{
signing_stage = STAGE_REQUEST_2_PREV_EXTRADATA;
resp.has_request_type = true;
resp.request_type = RequestType_TXEXTRADATA;
resp.has_details = true;
resp.details.has_extra_data_offset = true;
resp.details.extra_data_offset = chunk_offset;
resp.details.has_extra_data_len = true;
resp.details.extra_data_len = chunk_len;
resp.details.has_tx_hash = true;
resp.details.tx_hash.size = input.prev_hash.size;
memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, resp.details.tx_hash.size);
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_3_output(void)
{
signing_stage = STAGE_REQUEST_3_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_4_input(void)
{
signing_stage = STAGE_REQUEST_4_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_4_output(void)
{
signing_stage = STAGE_REQUEST_4_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx2;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_segwit_input(void)
{
signing_stage = STAGE_REQUEST_SEGWIT_INPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_segwit_witness(void)
{
signing_stage = STAGE_REQUEST_SEGWIT_WITNESS;
resp.has_request_type = true;
resp.request_type = RequestType_TXINPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_5_output(void)
{
signing_stage = STAGE_REQUEST_5_OUTPUT;
resp.has_request_type = true;
resp.request_type = RequestType_TXOUTPUT;
resp.has_details = true;
resp.details.has_request_index = true;
resp.details.request_index = idx1;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void send_req_finished(void)
{
resp.has_request_type = true;
resp.request_type = RequestType_TXFINISHED;
msg_write(MessageType_MessageType_TxRequest, &resp);
}
void phase1_request_next_input(void)
{
if (idx1 < inputs_count - 1) {
idx1++;
send_req_1_input();
} else {
// compute segwit hashPrevouts & hashSequence
hasher_Double(&hashers[0], hash_prevouts);
hasher_Double(&hashers[1], hash_sequence);
hasher_Final(&hashers[2], hash_check);
// init hashOutputs
hasher_Reset(&hashers[0]);
idx1 = 0;
send_req_3_output();
}
}
void phase2_request_next_input(void)
{
if (idx1 == next_nonsegwit_input) {
idx2 = 0;
send_req_4_input();
} else {
send_req_segwit_input();
}
}
void extract_input_bip32_path(const TxInputType *tinput)
{
if (in_address_n_count == BIP32_NOCHANGEALLOWED) {
return;
}
size_t count = tinput->address_n_count;
if (count < BIP32_WALLET_DEPTH) {
// no change address allowed
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
if (in_address_n_count == 0) {
// initialize in_address_n on first input seen
in_address_n_count = count;
// store the bip32 path up to the account
memcpy(in_address_n, tinput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t));
return;
}
// check that all addresses use a path of same length
if (in_address_n_count != count) {
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
// check that the bip32 path up to the account matches
if (memcmp(in_address_n, tinput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t)) != 0) {
// mismatch -> no change address allowed
in_address_n_count = BIP32_NOCHANGEALLOWED;
return;
}
}
bool check_change_bip32_path(const TxOutputType *toutput)
{
size_t count = toutput->address_n_count;
// Check that the change path has the same bip32 path length,
// the same path up to the account, and that the wallet components
// (chain id and address) are as expected.
// Note: count >= BIP32_WALLET_DEPTH and count == in_address_n_count
// imply that in_address_n_count != BIP32_NOCHANGEALLOWED
return (count >= BIP32_WALLET_DEPTH
&& count == in_address_n_count
&& 0 == memcmp(in_address_n, toutput->address_n,
(count - BIP32_WALLET_DEPTH) * sizeof(uint32_t))
&& toutput->address_n[count - 2] <= BIP32_CHANGE_CHAIN
&& toutput->address_n[count - 1] <= BIP32_MAX_LAST_ELEMENT);
}
bool compile_input_script_sig(TxInputType *tinput)
{
if (!multisig_fp_mismatch) {
// check that this is still multisig
uint8_t h[32];
if (!tinput->has_multisig
|| cryptoMultisigFingerprint(&(tinput->multisig), h) == 0
|| memcmp(multisig_fp, h, 32) != 0) {
// Transaction has changed during signing
return false;
}
}
if (in_address_n_count != BIP32_NOCHANGEALLOWED) {
// check that input address didn't change
size_t count = tinput->address_n_count;
if (count < 2
|| count != in_address_n_count
|| 0 != memcmp(in_address_n, tinput->address_n, (count - 2) * sizeof(uint32_t))) {
return false;
}
}
memcpy(&node, root, sizeof(HDNode));
if (hdnode_private_ckd_cached(&node, tinput->address_n, tinput->address_n_count, NULL) == 0) {
// Failed to derive private key
return false;
}
hdnode_fill_public_key(&node);
if (tinput->has_multisig) {
tinput->script_sig.size = compile_script_multisig(&(tinput->multisig), tinput->script_sig.bytes);
} else { // SPENDADDRESS
uint8_t hash[20];
ecdsa_get_pubkeyhash(node.public_key, coin->curve->hasher_type, hash);
tinput->script_sig.size = compile_script_sig(coin->address_type, hash, tinput->script_sig.bytes);
}
return tinput->script_sig.size > 0;
}
void signing_init(uint32_t _inputs_count, uint32_t _outputs_count, const CoinInfo *_coin, const HDNode *_root, uint32_t _version, uint32_t _lock_time)
{
inputs_count = _inputs_count;
outputs_count = _outputs_count;
coin = _coin;
root = _root;
version = _version;
lock_time = _lock_time;
tx_weight = 4 * (TXSIZE_HEADER + TXSIZE_FOOTER
+ ser_length_size(inputs_count)
+ ser_length_size(outputs_count));
signatures = 0;
idx1 = 0;
to_spend = 0;
spending = 0;
change_spend = 0;
authorized_amount = 0;
memset(&input, 0, sizeof(TxInputType));
memset(&resp, 0, sizeof(TxRequest));
signing = true;
progress = 0;
// we step by 500/inputs_count per input in phase1 and phase2
// this means 50 % per phase.
progress_step = (500 << PROGRESS_PRECISION) / inputs_count;
in_address_n_count = 0;
multisig_fp_set = false;
multisig_fp_mismatch = false;
next_nonsegwit_input = 0xffffffff;
tx_init(&to, inputs_count, outputs_count, version, lock_time, 0, coin->curve->hasher_type);
// segwit hashes for hashPrevouts and hashSequence
hasher_Init(&hashers[0], coin->curve->hasher_type);
hasher_Init(&hashers[1], coin->curve->hasher_type);
hasher_Init(&hashers[2], coin->curve->hasher_type);
layoutProgressSwipe(_("Signing transaction"), 0);
send_req_1_input();
}
#define MIN(a,b) (((a)<(b))?(a):(b))
static bool signing_check_input(TxInputType *txinput) {
/* compute multisig fingerprint */
/* (if all input share the same fingerprint, outputs having the same fingerprint will be considered as change outputs) */
if (txinput->has_multisig && !multisig_fp_mismatch) {
uint8_t h[32];
if (cryptoMultisigFingerprint(&txinput->multisig, h) == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Error computing multisig fingerprint"));
signing_abort();
return false;
}
if (multisig_fp_set) {
if (memcmp(multisig_fp, h, 32) != 0) {
multisig_fp_mismatch = true;
}
} else {
memcpy(multisig_fp, h, 32);
multisig_fp_set = true;
}
} else { // single signature
multisig_fp_mismatch = true;
}
// remember the input bip32 path
// change addresses must use the same bip32 path as all inputs
extract_input_bip32_path(txinput);
// compute segwit hashPrevouts & hashSequence
tx_prevout_hash(&hashers[0], txinput);
tx_sequence_hash(&hashers[1], txinput);
// hash prevout and script type to check it later (relevant for fee computation)
tx_prevout_hash(&hashers[2], txinput);
hasher_Update(&hashers[2], (const uint8_t *) &txinput->script_type, sizeof(&txinput->script_type));
return true;
}
// check if the hash of the prevtx matches
static bool signing_check_prevtx_hash(void) {
uint8_t hash[32];
tx_hash_final(&tp, hash, true);
if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Encountered invalid prevhash"));
signing_abort();
return false;
}
phase1_request_next_input();
return true;
}
static bool signing_check_output(TxOutputType *txoutput) {
// Phase1: Check outputs
// add it to hash_outputs
// ask user for permission
// check for change address
bool is_change = false;
if (txoutput->address_n_count > 0) {
if (txoutput->has_address) {
fsm_sendFailure(FailureType_Failure_DataError, _("Address in change output"));
signing_abort();
return false;
}
/*
* For multisig check that all inputs are multisig
*/
if (txoutput->has_multisig) {
uint8_t h[32];
if (multisig_fp_set && !multisig_fp_mismatch
&& cryptoMultisigFingerprint(&(txoutput->multisig), h)
&& memcmp(multisig_fp, h, 32) == 0) {
is_change = check_change_bip32_path(txoutput);
}
} else {
is_change = check_change_bip32_path(txoutput);
}
/*
* only allow segwit change if amount is smaller than what segwit inputs paid.
* this was added during the times segwit was not yet fully activated
* to make sure the user is not tricked to use witness change output
* instead of regular one therefore creating ANYONECANSPEND output
*/
if ((txoutput->script_type == OutputScriptType_PAYTOWITNESS
|| txoutput->script_type == OutputScriptType_PAYTOP2SHWITNESS)
&& txoutput->amount > authorized_amount) {
is_change = false;
}
}
if (is_change) {
if (change_spend == 0) { // not set
change_spend = txoutput->amount;
} else {
/* We only skip confirmation for the first change output */
is_change = false;
}
}
if (spending + txoutput->amount < spending) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return false;
}
spending += txoutput->amount;
int co = compile_output(coin, root, txoutput, &bin_output, !is_change);
if (!is_change) {
layoutProgress(_("Signing transaction"), progress);
}
if (co < 0) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
} else if (co == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile output"));
signing_abort();
return false;
}
// compute segwit hashOuts
tx_output_hash(&hashers[0], &bin_output);
return true;
}
static bool signing_check_fee(void) {
// check fees
if (spending > to_spend) {
fsm_sendFailure(FailureType_Failure_NotEnoughFunds, _("Not enough funds"));
signing_abort();
return false;
}
uint64_t fee = to_spend - spending;
if (fee > ((uint64_t) tx_weight * coin->maxfee_kb)/4000) {
layoutFeeOverThreshold(coin, fee);
if (!protectButton(ButtonRequestType_ButtonRequest_FeeOverThreshold, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
}
// last confirmation
layoutConfirmTx(coin, to_spend - change_spend, fee);
if (!protectButton(ButtonRequestType_ButtonRequest_SignTx, false)) {
fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL);
signing_abort();
return false;
}
return true;
}
static uint32_t signing_hash_type(void) {
uint32_t hash_type = SIGHASH_ALL;
if (coin->has_forkid) {
hash_type |= (coin->forkid << 8) | SIGHASH_FORKID;
}
return hash_type;
}
static void phase1_request_next_output(void) {
if (idx1 < outputs_count - 1) {
idx1++;
send_req_3_output();
} else {
hasher_Double(&hashers[0], hash_outputs);
if (!signing_check_fee()) {
return;
}
// Everything was checked, now phase 2 begins and the transaction is signed.
progress_meta_step = progress_step / (inputs_count + outputs_count);
layoutProgress(_("Signing transaction"), progress);
idx1 = 0;
phase2_request_next_input();
}
}
static void signing_hash_bip143(const TxInputType *txinput, uint8_t *hash) {
uint32_t hash_type = signing_hash_type();
hasher_Reset(&hashers[0]);
hasher_Update(&hashers[0], (const uint8_t *)&version, 4);
hasher_Update(&hashers[0], hash_prevouts, 32);
hasher_Update(&hashers[0], hash_sequence, 32);
tx_prevout_hash(&hashers[0], txinput);
tx_script_hash(&hashers[0], txinput->script_sig.size, txinput->script_sig.bytes);
hasher_Update(&hashers[0], (const uint8_t*) &txinput->amount, 8);
tx_sequence_hash(&hashers[0], txinput);
hasher_Update(&hashers[0], hash_outputs, 32);
hasher_Update(&hashers[0], (const uint8_t*) &lock_time, 4);
hasher_Update(&hashers[0], (const uint8_t*) &hash_type, 4);
hasher_Double(&hashers[0], hash);
}
static bool signing_sign_hash(TxInputType *txinput, const uint8_t* private_key, const uint8_t *public_key, const uint8_t *hash) {
resp.serialized.has_signature_index = true;
resp.serialized.signature_index = idx1;
resp.serialized.has_signature = true;
resp.serialized.has_serialized_tx = true;
if (ecdsa_sign_digest(&secp256k1, private_key, hash, sig, NULL, NULL) != 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Signing failed"));
signing_abort();
return false;
}
resp.serialized.signature.size = ecdsa_sig_to_der(sig, resp.serialized.signature.bytes);
uint8_t sighash = signing_hash_type() & 0xff;
if (txinput->has_multisig) {
// fill in the signature
int pubkey_idx = cryptoMultisigPubkeyIndex(&(txinput->multisig), public_key);
if (pubkey_idx < 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Pubkey not found in multisig script"));
signing_abort();
return false;
}
memcpy(txinput->multisig.signatures[pubkey_idx].bytes, resp.serialized.signature.bytes, resp.serialized.signature.size);
txinput->multisig.signatures[pubkey_idx].size = resp.serialized.signature.size;
txinput->script_sig.size = serialize_script_multisig(&(txinput->multisig), sighash, txinput->script_sig.bytes);
if (txinput->script_sig.size == 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize multisig script"));
signing_abort();
return false;
}
} else { // SPENDADDRESS
txinput->script_sig.size = serialize_script_sig(resp.serialized.signature.bytes, resp.serialized.signature.size, public_key, 33, sighash, txinput->script_sig.bytes);
}
return true;
}
static bool signing_sign_input(void) {
uint8_t hash[32];
hasher_Double(&hashers[0], hash);
if (memcmp(hash, hash_outputs, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Transaction has changed during signing"));
signing_abort();
return false;
}
uint32_t hash_type = signing_hash_type();
hasher_Update(&ti.hasher, (const uint8_t *)&hash_type, 4);
tx_hash_final(&ti, hash, false);
resp.has_serialized = true;
if (!signing_sign_hash(&input, privkey, pubkey, hash))
return false;
resp.serialized.serialized_tx.size = tx_serialize_input(&to, &input, resp.serialized.serialized_tx.bytes);
return true;
}
static bool signing_sign_segwit_input(TxInputType *txinput) {
// idx1: index to sign
uint8_t hash[32];
if (txinput->script_type == InputScriptType_SPENDWITNESS
|| txinput->script_type == InputScriptType_SPENDP2SHWITNESS) {
if (!compile_input_script_sig(txinput)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile input"));
signing_abort();
return false;
}
if (txinput->amount > authorized_amount) {
fsm_sendFailure(FailureType_Failure_DataError, _("Transaction has changed during signing"));
signing_abort();
return false;
}
authorized_amount -= txinput->amount;
signing_hash_bip143(txinput, hash);
resp.has_serialized = true;
if (!signing_sign_hash(txinput, node.private_key, node.public_key, hash))
return false;
uint8_t sighash = signing_hash_type() & 0xff;
if (txinput->has_multisig) {
uint32_t r = 1; // skip number of items (filled in later)
resp.serialized.serialized_tx.bytes[r] = 0; r++;
int nwitnesses = 2;
for (uint32_t i = 0; i < txinput->multisig.signatures_count; i++) {
if (txinput->multisig.signatures[i].size == 0) {
continue;
}
nwitnesses++;
txinput->multisig.signatures[i].bytes[txinput->multisig.signatures[i].size] = sighash;
r += tx_serialize_script(txinput->multisig.signatures[i].size + 1, txinput->multisig.signatures[i].bytes, resp.serialized.serialized_tx.bytes + r);
}
uint32_t script_len = compile_script_multisig(&txinput->multisig, 0);
r += ser_length(script_len, resp.serialized.serialized_tx.bytes + r);
r += compile_script_multisig(&txinput->multisig, resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.bytes[0] = nwitnesses;
resp.serialized.serialized_tx.size = r;
} else { // single signature
uint32_t r = 0;
r += ser_length(2, resp.serialized.serialized_tx.bytes + r);
resp.serialized.signature.bytes[resp.serialized.signature.size] = sighash;
r += tx_serialize_script(resp.serialized.signature.size + 1, resp.serialized.signature.bytes, resp.serialized.serialized_tx.bytes + r);
r += tx_serialize_script(33, node.public_key, resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.size = r;
}
} else {
// empty witness
resp.has_serialized = true;
resp.serialized.has_signature_index = false;
resp.serialized.has_signature = false;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.bytes[0] = 0;
resp.serialized.serialized_tx.size = 1;
}
// if last witness add tx footer
if (idx1 == inputs_count - 1) {
uint32_t r = resp.serialized.serialized_tx.size;
r += tx_serialize_footer(&to, resp.serialized.serialized_tx.bytes + r);
resp.serialized.serialized_tx.size = r;
}
return true;
}
#define ENABLE_SEGWIT_NONSEGWIT_MIXING 1
void signing_txack(TransactionType *tx)
{
if (!signing) {
fsm_sendFailure(FailureType_Failure_UnexpectedMessage, _("Not in Signing mode"));
layoutHome();
return;
}
static int update_ctr = 0;
if (update_ctr++ == 20) {
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
}
memset(&resp, 0, sizeof(TxRequest));
switch (signing_stage) {
case STAGE_REQUEST_1_INPUT:
signing_check_input(&tx->inputs[0]);
tx_weight += tx_input_weight(&tx->inputs[0]);
if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG
|| tx->inputs[0].script_type == InputScriptType_SPENDADDRESS) {
memcpy(&input, tx->inputs, sizeof(TxInputType));
#if !ENABLE_SEGWIT_NONSEGWIT_MIXING
// don't mix segwit and non-segwit inputs
if (idx1 > 0 && to.is_segwit == true) {
fsm_sendFailure(FailureType_Failure_DataError, _("Mixing segwit and non-segwit inputs is not allowed"));
signing_abort();
return;
}
#endif
if (coin->force_bip143) {
if (!tx->inputs[0].has_amount) {
fsm_sendFailure(FailureType_Failure_DataError, _("BIP 143 input without amount"));
signing_abort();
return;
}
if (to_spend + tx->inputs[0].amount < to_spend) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return;
}
to_spend += tx->inputs[0].amount;
authorized_amount += tx->inputs[0].amount;
phase1_request_next_input();
} else {
// remember the first non-segwit input -- this is the first input
// we need to sign during phase2
if (next_nonsegwit_input == 0xffffffff)
next_nonsegwit_input = idx1;
send_req_2_prev_meta();
}
} else if (tx->inputs[0].script_type == InputScriptType_SPENDWITNESS
|| tx->inputs[0].script_type == InputScriptType_SPENDP2SHWITNESS) {
if (!coin->has_segwit) {
fsm_sendFailure(FailureType_Failure_DataError, _("Segwit not enabled on this coin"));
signing_abort();
return;
}
if (!tx->inputs[0].has_amount) {
fsm_sendFailure(FailureType_Failure_DataError, _("Segwit input without amount"));
signing_abort();
return;
}
if (to_spend + tx->inputs[0].amount < to_spend) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return;
}
if (!to.is_segwit) {
tx_weight += TXSIZE_SEGWIT_OVERHEAD + to.inputs_len;
}
#if !ENABLE_SEGWIT_NONSEGWIT_MIXING
// don't mix segwit and non-segwit inputs
if (idx1 == 0) {
to.is_segwit = true;
} else if (to.is_segwit == false) {
fsm_sendFailure(FailureType_Failure_DataError, _("Mixing segwit and non-segwit inputs is not allowed"));
signing_abort();
return;
}
#else
to.is_segwit = true;
#endif
to_spend += tx->inputs[0].amount;
authorized_amount += tx->inputs[0].amount;
phase1_request_next_input();
} else {
fsm_sendFailure(FailureType_Failure_DataError, _("Wrong input script type"));
signing_abort();
return;
}
return;
case STAGE_REQUEST_2_PREV_META:
tx_init(&tp, tx->inputs_cnt, tx->outputs_cnt, tx->version, tx->lock_time, tx->extra_data_len, coin->curve->hasher_type);
progress_meta_step = progress_step / (tp.inputs_len + tp.outputs_len);
idx2 = 0;
if (tp.inputs_len > 0) {
send_req_2_prev_input();
} else {
tx_serialize_header_hash(&tp);
send_req_2_prev_output();
}
return;
case STAGE_REQUEST_2_PREV_INPUT:
progress = (idx1 * progress_step + idx2 * progress_meta_step) >> PROGRESS_PRECISION;
if (!tx_serialize_input_hash(&tp, tx->inputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize input"));
signing_abort();
return;
}
if (idx2 < tp.inputs_len - 1) {
idx2++;
send_req_2_prev_input();
} else {
idx2 = 0;
send_req_2_prev_output();
}
return;
case STAGE_REQUEST_2_PREV_OUTPUT:
progress = (idx1 * progress_step + (tp.inputs_len + idx2) * progress_meta_step) >> PROGRESS_PRECISION;
if (!tx_serialize_output_hash(&tp, tx->bin_outputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize output"));
signing_abort();
return;
}
if (idx2 == input.prev_index) {
if (to_spend + tx->bin_outputs[0].amount < to_spend) {
fsm_sendFailure(FailureType_Failure_DataError, _("Value overflow"));
signing_abort();
return;
}
to_spend += tx->bin_outputs[0].amount;
}
if (idx2 < tp.outputs_len - 1) {
/* Check prevtx of next input */
idx2++;
send_req_2_prev_output();
} else if (tp.extra_data_len > 0) { // has extra data
send_req_2_prev_extradata(0, MIN(1024, tp.extra_data_len));
return;
} else {
/* prevtx is done */
signing_check_prevtx_hash();
}
return;
case STAGE_REQUEST_2_PREV_EXTRADATA:
if (!tx_serialize_extra_data_hash(&tp, tx->extra_data.bytes, tx->extra_data.size)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize extra data"));
signing_abort();
return;
}
if (tp.extra_data_received < tp.extra_data_len) { // still some data remanining
send_req_2_prev_extradata(tp.extra_data_received, MIN(1024, tp.extra_data_len - tp.extra_data_received));
} else {
signing_check_prevtx_hash();
}
return;
case STAGE_REQUEST_3_OUTPUT:
if (!signing_check_output(&tx->outputs[0])) {
return;
}
tx_weight += tx_output_weight(coin, &tx->outputs[0]);
phase1_request_next_output();
return;
case STAGE_REQUEST_4_INPUT:
progress = 500 + ((signatures * progress_step + idx2 * progress_meta_step) >> PROGRESS_PRECISION);
if (idx2 == 0) {
tx_init(&ti, inputs_count, outputs_count, version, lock_time, 0, coin->curve->hasher_type);
hasher_Reset(&hashers[0]);
}
// check prevouts and script type
tx_prevout_hash(&hashers[0], tx->inputs);
hasher_Update(&hashers[0], (const uint8_t *) &tx->inputs[0].script_type, sizeof(&tx->inputs[0].script_type));
if (idx2 == idx1) {
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile input"));
signing_abort();
return;
}
memcpy(&input, &tx->inputs[0], sizeof(input));
memcpy(privkey, node.private_key, 32);
memcpy(pubkey, node.public_key, 33);
} else {
if (next_nonsegwit_input == idx1 && idx2 > idx1
&& (tx->inputs[0].script_type == InputScriptType_SPENDADDRESS
|| tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG)) {
next_nonsegwit_input = idx2;
}
tx->inputs[0].script_sig.size = 0;
}
if (!tx_serialize_input_hash(&ti, tx->inputs)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize input"));
signing_abort();
return;
}
if (idx2 < inputs_count - 1) {
idx2++;
send_req_4_input();
} else {
uint8_t hash[32];
hasher_Final(&hashers[0], hash);
if (memcmp(hash, hash_check, 32) != 0) {
fsm_sendFailure(FailureType_Failure_DataError, _("Transaction has changed during signing"));
signing_abort();
return;
}
hasher_Reset(&hashers[0]);
idx2 = 0;
send_req_4_output();
}
return;
case STAGE_REQUEST_4_OUTPUT:
progress = 500 + ((signatures * progress_step + (inputs_count + idx2) * progress_meta_step) >> PROGRESS_PRECISION);
if (compile_output(coin, root, tx->outputs, &bin_output, false) <= 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile output"));
signing_abort();
return;
}
// check hashOutputs
tx_output_hash(&hashers[0], &bin_output);
if (!tx_serialize_output_hash(&ti, &bin_output)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to serialize output"));
signing_abort();
return;
}
if (idx2 < outputs_count - 1) {
idx2++;
send_req_4_output();
} else {
if (!signing_sign_input()) {
return;
}
// since this took a longer time, update progress
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
if (idx1 < inputs_count - 1) {
idx1++;
phase2_request_next_input();
} else {
idx1 = 0;
send_req_5_output();
}
}
return;
case STAGE_REQUEST_SEGWIT_INPUT:
resp.has_serialized = true;
resp.serialized.has_signature_index = false;
resp.serialized.has_signature = false;
resp.serialized.has_serialized_tx = true;
if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG
|| tx->inputs[0].script_type == InputScriptType_SPENDADDRESS) {
if (!coin->force_bip143) {
fsm_sendFailure(FailureType_Failure_DataError, _("Transaction has changed during signing"));
signing_abort();
return;
}
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile input"));
signing_abort();
return;
}
if (tx->inputs[0].amount > authorized_amount) {
fsm_sendFailure(FailureType_Failure_DataError, _("Transaction has changed during signing"));
signing_abort();
return;
}
authorized_amount -= tx->inputs[0].amount;
uint8_t hash[32];
signing_hash_bip143(&tx->inputs[0], hash);
if (!signing_sign_hash(&tx->inputs[0], node.private_key, node.public_key, hash))
return;
// since this took a longer time, update progress
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
} else if (tx->inputs[0].script_type == InputScriptType_SPENDP2SHWITNESS
&& !tx->inputs[0].has_multisig) {
if (!compile_input_script_sig(&tx->inputs[0])) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile input"));
signing_abort();
return;
}
// fixup normal p2pkh script into witness 0 p2wpkh script for p2sh
// we convert 76 A9 14 <digest> 88 AC to 16 00 14 <digest>
// P2SH input pushes witness 0 script
tx->inputs[0].script_sig.size = 0x17; // drops last 2 bytes.
tx->inputs[0].script_sig.bytes[0] = 0x16; // push 22 bytes; replaces OP_DUP
tx->inputs[0].script_sig.bytes[1] = 0x00; // witness 0 script ; replaces OP_HASH160
// digest is already in right place.
} else if (tx->inputs[0].script_type == InputScriptType_SPENDP2SHWITNESS) {
// Prepare P2SH witness script.
tx->inputs[0].script_sig.size = 0x23; // 35 bytes long:
tx->inputs[0].script_sig.bytes[0] = 0x22; // push 34 bytes (full witness script)
tx->inputs[0].script_sig.bytes[1] = 0x00; // witness 0 script
tx->inputs[0].script_sig.bytes[2] = 0x20; // push 32 bytes (digest)
// compute digest of multisig script
if (!compile_script_multisig_hash(&tx->inputs[0].multisig, coin->curve->hasher_type, tx->inputs[0].script_sig.bytes + 3)) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile input"));
signing_abort();
return;
}
} else {
// direct witness scripts require zero scriptSig
tx->inputs[0].script_sig.size = 0;
}
resp.serialized.serialized_tx.size = tx_serialize_input(&to, &tx->inputs[0], resp.serialized.serialized_tx.bytes);
if (idx1 < inputs_count - 1) {
idx1++;
phase2_request_next_input();
} else {
idx1 = 0;
send_req_5_output();
}
return;
case STAGE_REQUEST_5_OUTPUT:
if (compile_output(coin, root, tx->outputs, &bin_output,false) <= 0) {
fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to compile output"));
signing_abort();
return;
}
resp.has_serialized = true;
resp.serialized.has_serialized_tx = true;
resp.serialized.serialized_tx.size = tx_serialize_output(&to, &bin_output, resp.serialized.serialized_tx.bytes);
if (idx1 < outputs_count - 1) {
idx1++;
send_req_5_output();
} else if (to.is_segwit) {
idx1 = 0;
send_req_segwit_witness();
} else {
send_req_finished();
signing_abort();
}
return;
case STAGE_REQUEST_SEGWIT_WITNESS:
if (!signing_sign_segwit_input(&tx->inputs[0])) {
return;
}
signatures++;
progress = 500 + ((signatures * progress_step) >> PROGRESS_PRECISION);
layoutProgress(_("Signing transaction"), progress);
update_ctr = 0;
if (idx1 < inputs_count - 1) {
idx1++;
send_req_segwit_witness();
} else {
send_req_finished();
signing_abort();
}
return;
}
fsm_sendFailure(FailureType_Failure_ProcessError, _("Signing error"));
signing_abort();
}
void signing_abort(void)
{
if (signing) {
layoutHome();
signing = false;
}
}